
Metroeconomica 51:3 (2000) 235±256

# Blackwell Publishers Ltd 2000, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main

Street, Malden, MA 02148, USA.

COMBINING RATIONAL CHOICE AND EVOLUTIONARY
DYNAMICS: THE INDIRECT EVOLUTIONARY APPROACH

Manfred KoÈnigstein and Wieland MuÈller�
Humboldt-University Berlin

(August 1998; revised June 1999)

ABSTRACT

In this study we propose a formal framework for the indirect evolutionary approach initiated by

GuÈth and Yaari. It allows us to endogenize preferences and to study their evolution. We de®ne

two-player indirect evolutionary games with observable types and show how to incorporate

symmetric as well as asymmetric situations. We show how to apply solution concepts that are

well known from game theory and evolutionary game theory to solve these games. For

illustration we include two examples.

1. INTRODUCTION

In this paper we describe a special technique in modeling and analyzing

human behavior: the indirect evolutionary approach (IEA). It was in-

itiated by GuÈth and Yaari (1992) in a study on the evolution of

reciprocal behavior and was subsequently applied to investigate, for

example, the evolution of trust (GuÈth and Kliemt (1994)), monopolistic

competition (GuÈth and Huck (1997)), as well as the evolution of altruism

within a duopoly framework (Bester and GuÈth (1998)) and within

ultimatum games with production (KoÈnigstein (2000)).

The IEA comprises modeling and solving an indirect evolutionary
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game. We focus on two-player games. In such games a large population

of players is matched in pairs. Each pair plays a two-player game. As in

any other noncooperative two-player game, each player chooses a strat-

egy and the strategy pro®le determines the utilities of both players. In

addition, each strategy pro®le determines a ®tness vector, with ®tness

being a measure of reproductive (evolutionary) success. A key idea of

the IEA is that utility and evolutionary success need not coincide; while

individuals may act rationally by choosing strategies that maximize

utility, this may not maximize their evolutionary success. If individuals

differ in evolutionary success, the personal characteristics of more

successful individuals will spread within the population faster than the

characteristics of the less successful ones. This leads to a dynamic

process that determines the long-run distribution of personal character-

istics within a society. The characteristics are modeled as parameters of

the utility functions. Along with studying the evolution of preferences

the analysis also determines the long-run distribution of strategy choices

that are associated with the evolving preferences.

In solving an indirect evolutionary game two classes of familiar

solution concepts are combined: solution concepts of noncooperative

game theory (Nash equilibrium, subgame perfect equilibrium etc.) and

static or dynamic solution concepts of evolutionary game theory (ESS,

LESS, (asymptotically) stable ®xed points of evolutionary dynamics

etc.).1

The IEA has emerged via applications. So far, only little work has

been done on establishing a formal conceptual framework. Here we take

a step in this direction. We de®ne the class of two-player indirect

evolutionary games with observed types, which is the class of games

studied in most applications to date, and we present a unifying descrip-

tion of symmetric as well as asymmetric games. We give two examples:

a symmetric one where we apply a static evolutionary solution concept

(ESS) and an asymmetric one where we apply a dynamic solution

concept (asymptotically stable ®xed points of the replicator dynamics).

We conclude with a methodological discussion in which we address

some potential criticisms of the IEA and point to extensions. One

possible extension could be the substitution of the perfect rationality

assumption by some kind of boundedly rational learning process.

Furthermore one could replace the evolutionary dynamic by some other

1 ESS and LESS refer to the concepts of an evolutionarily stable strategy and a limit

evolutionarily stable strategy, respectively.
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kind of social dynamic, e.g. imitation. The formalism of the IEA is also

suited for such applications. These extensions might be fruitful.

2. TWO-PLAYER INDIRECT EVOLUTIONARY GAMES WITH OBSERVABLE

TYPES

2.1 Game models

In an indirect evolutionary game Ã there is a large population of

individuals (throughout we will actually assume an in®nite population)

who are repeatedly matched in pairs to play a two-person game which

we refer to as the base game of Ã . Player i (i � 1, 2) chooses a strategy

si in order to maximize individual utility ui and bequeaths his type ti

(with ui depending on ti) to the next generation depending on evolu-

tionary success ri. Formally, we de®ne Ã as follows.

De®nition 1. A two-player indirect evolutionary game with observable

types is described by the 8-tuple

Ã � ((Si, Ti, ui, ri)i�1,2)

· Si denotes a nonempty set consisting of player i's pure strategies si.

The tuple s � (s1, s2) represents a pure strategy vector. The set S �
f(s1, s2)jsi 2 Sig � S1 3 S2 is the set of all pure strategy vectors.

· Ti is a nonempty set of possible types of player i (type space). A single

element of set Ti is denoted by ti. The tuple t � (t1, t2) consisting of

both players' types is referred to as a type vector, and we will write

T � f(t1, t2)jti 2 Tig � T1 3 T2 for the set of all type vectors. In this

study a player's type is assumed to be a parameter of his utility

function. So, the term `type' essentially refers to a type of preferences.

The types are assumed to be observable.

· ui denotes player i's utility function. It is a mapping ui: S 3 T ! R.

· ri is player i's evolutionary success (®tness function). It is a mapping

ri: S ! R.

· For a given type vector t the components Si and ui de®ne a game GB(t):

GB(t1, t2) � ((Si, ui)i�1,2)j( t1, t2)

which we will refer to as a base game of Ã . Accordingly GB �
fGB(t)jt 2 Tg denotes the set of base games. Modeling an indirect
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evolutionary game basically means embedding a set of base games

into an evolutionary system.

· Throughout the paper we investigate evolution in a single population of

in®nite size.2 Each individual of the population is randomly matched

with one other individual to play the base game GB(t1, t2). They play

only once and then bequeath their respective type to their `children'

with reproductive success of i according to ri. In the next period the

population of children is matched and plays the game. This process

continues forever.

· The assumption of a single-population model implies that an individual

can be assigned to either of the two roles i � 1 or i � 2 in the base

game. So, an individual should actually be endowed with a type vector

(t1, t2) instead of a one-dimensional type ti. This will be assumed

within asymmetric games. Within symmetric games an individual is

suf®ciently characterized by ti.

An indirect evolutionary game thus combines two familiar types of

theoretical models: a noncooperative game and an evolutionary system.

Each base game GB(t1, t2) is a standard noncooperative game with

strategy spaces S1, S2 and with t1 and t2 being parameters of the

players' utility functions (which are commonly known). Ti is the set of

possible utility parameters and represents the mutation space of the

evolutionary system. The population share of individuals of type ti

which is present in period ô� 1 depends on evolutionary ®tness ri in

period ô and on mutations. We shall say more about the evolutionary

dynamics below. A key idea of the IEA is that, in general, utility and

evolutionary success are not the same; i.e. the functions ui and ri differ.

This should not be viewed as a critical assumption. Rather, it is the

speci®c purpose of the IEA to investigate evolution of behavior when

the motives (preferences) that drive individual decisions differ from the

forces that determine long-run survival of motives (preferences) within a

society.

Another special feature of indirect evolutionary games is that ri does

not depend on t, at least not directly. Remember that ti is the

characteristic of an individual that is the object of mutation and

inheritance within this model. That ®tness does not directly depend on it

may be surprising from the perspective of usual evolutionary games.

2 It will be obvious later how to extend the indirect evolutionary approach to two-population

models.
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However, we will show below that the assumption of utility-maximizing

players leads to strategy choices si that depend on t. Since ri is de®ned

on S, and s is a function of t, it follows that evolutionary success does

ultimately depend on types. This will become clear when we now

describe how to solve an indirect evolutionary game.

2.2 Solution concepts

Within an indirect evolutionary game a player i is endowed with a utility

function ui and an individual preference parameter ti. His choice variable

is si.
3 In accordance with standard economic theory we assume that i

will choose si in order to maximize his utility; i.e. we assume that

players are rational. Within strategic games this assumption implies that

the chosen strategy pro®le is a Nash equilibrium. We denote by s�(t) a

Nash equilibrium of GB(t1, t2) which is considered the unique solution

of the game. Saying that s�(t) is considered the unique solution of the

game implicitly assumes that if the base game exhibits multiple equili-

bria then some kind of equilibrium re®nement4 or equilibrium selection

theory5 is applied to determine a unique solution.

In determining their equilibrium strategies the players take into

account utility but not evolutionary success. However, we can determine

the evolutionary success of each player i as

r�i (t1, t2) � ri(s
�
1 (t), s�2 (t))

i.e. by evaluating the evolutionary success function ri at equilibrium

strategies. In the terminology of dynamic optimization the function r�i is

a value function. We will refer to it as the `indirect evolutionary success

function'. Indirect evolutionary success r�i depends only on the players'

types. These types are inherited from generation to generation and may

mutate within the limits of the type space Ti. Note that at this stage we

have all the ingredients of a `usual' evolutionary game GE which is

described by the type spaces Ti and the indirect evolutionary success

functions r�i :

3 We assume that the players choose pure strategies in order to simplify our exposition.

Thus, we assume that a solution in pure strategies exists. However, it will be obvious how to

extend the approach to allow for mixed strategies.
4 For details see van Damme (1991).
5 See Harsanyi and Selten (1988).
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GE � ((Ti, r�i )i�1,2):

We will refer to the models usually investigated in evolutionary game

theory6 as `direct evolutionary games' in order to distinguish them from

an indirect evolutionary game Ã . Accordingly, GE will be referred to as

the `direct evolutionary game that is associated with Ã'.

In direct evolutionary games, evolutionary success depends directly on

types. Similarly, one could have started here by modeling the dependence

of r�i on t1 and t2, instead of deriving GE from the indirect evolutionary

game ÃÐwhich is what we do. By doing so we motivate the speci®ca-

tion of r�i by some underlying structure that allows for rational strategy

choices si based on inherited types. We view this as an advantage of the

IEA, and we return to this point in the discussion below.

We spent this effort on explaining differences and similarities of direct

and indirect evolutionary games in order to show that we do not have to

develop new solution concepts to solve the evolutionary part (GE) of an

indirect evolutionary game Ã . Rather, we can simply apply one of the

static or dynamic solution concepts that are well known for direct

evolutionary games7 to analyze GE. We show how to do this below.

But ®rst, we generally characterize the solution of an indirect evolu-

tionary game as follows.

De®nition 2: A solution of a two-player indirect evolutionary game Ã as

de®ned above consists of

1. a type vector t� � (t�1 , t�2 ) (or a set of type vectors) which is the

solution of the game GE associated with Ã and

2. the equilibrium strategy choices s�i (t�1 , t�2 ) associated with t� (or the

set of equilibrium strategies that are associated with the solution set of

types).

Up to the point where GE is established by determining r�i both

symmetric and asymmetric indirect evolutionary games proceed in the

same manner. The above de®nition describes the solution for both kinds

of games. In the following we discuss some special concerns in the

analysis of symmetric versus asymmetric games.

6 See for example the textbooks by Weibull (1995) and Vega±Redondo (1996) or the paper

by Hammerstein and Selten (1994).
7 See for example Weibull (1995).
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2.3 Symmetric games

In this section we show more speci®cally how to solve an indirect

evolutionary game by applying the concepts of an evolutionarily stable

strategy (ESS) to a symmetric game Ã , or by looking for stable ®xed

points of replicator dynamics. We will show later how to solve asym-

metric games. The ESS concept belongs to the class of static solution

concepts whereas the second approach is a dynamic solution method.

A symmetric indirect evolutionary game Ã is de®ned as above with

the additional restrictions S1 � S2, T1 � T2 as well as

u1(s1, s2, t1, t2) � u2(s2, s1, t2, t1)

and

r1(s1, s2) � r2(s2, s1):

We can solve the base games GB(t1, t2) by determining s�(t) for all

t � (t1, t2) 2 T . Accordingly, the indirect evolutionary success function

r�i (t1, t2) � ri(s
�
1 (t), s�2 (t))

together with Ti (i � 1, 2) de®nes the symmetric direct evolutionary

game

GE � ((Ti, r�i )i�1,2)

that is associated with Ã . Within symmetric games the players' roles 1

or 2 are meaningless and it is customary in evolutionary game theory to

drop the role index i.

The important point in analyzing a symmetric game is that the

evolutionary solution has to be derived only for one of the two roles.

So, within symmetric games an individual is characterized by a single

type rather than a type vector. We therefore assume without loss of

generality that the evolutionary success of an individual of type t k when

matched with an individual of type t l is given by

r�(t k , t l) � r�1 (t k , t l)

with t k , t l 2 T1. Accordingly r�(t k , t k) is the evolutionary success of a

t k-individual when matched with a t k-individual.8
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An ESS of the indirect evolutionary game Ã is given by an ESS t k�
of the associated game GE. The ESS concept requires that the following

conditions hold:

r�(t k�, t k�) > r�(t k , t k�) for all t k 2 T1 (2:1)

and

r�(t k�, t k) . r�(t k , t k)

for all t k 6� t k� that satisfy r�(t k�, t k�) � r�(t k , t k�):
(2:2)

To see that the solution of a symmetric game Ã ®ts into the formalism

of a solution for general indirect evolutionary games as de®ned above

just note that t� � (t�1 , t�2 ) is given by (t k�, t k�) and that the corre-

sponding solution strategies are s�1 (t k , t k) and s�2 (t k , t k).

ESS is a static solution concept, but one might equally well apply

dynamic solution concepts to solve GE (and thus Ã). As an example we

brie¯y sketch how to use the continuous-time replicator dynamics9 (see

Weibull (1995)) within a symmetric indirect evolutionary game. Again,

we simplify the notation and consider an individual's type as given by

t k 2 T1 � ft1, . . ., t ng; i.e., T1 is now assumed to be a ®nite set of n

different types.

Let the state of the population at time ô be given by x(ô) �
(xt1 (ô), . . ., xt n (ô)) with

Pn
k�1xt k (ô) � 1 where xt k (ô) is the population

share of individuals who are endowed with type t k at time ô. The

dynamics for the population share xt k are given by

_xt k � [ek Axÿ x Ax]xt k (2:3)

with

8 Of course, the de®nitions of r�, t k and t l (thereby dropping the role index) are not

necessary. However, readers who are familiar with direct evolutionary games may appreciate

seeing the customary notation.
9 Note that the replicator dynamics described here operate on a ®nite set of types (or

strategies). This is the standard modeling approach in the literature (see for example Weibull

(1995) or Vega-Redondo (1996)). Replicator dynamics operating on mixed strategies are

discussed by for example Zeeman (1981), Akin (1982), Thomas (1985) and Bomze (1991).

For recent research regarding evolutionary dynamics on continuous action spaces, see for

example Binmore and Seymour (1995), Friedman and Yellin (1996), Hopkins and Seymour

(1996) and Oechssler and Riedel (1998).
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A �
r�(t1, t1) � � � r�(t1, t n)

..

. . .
. ..

.

r�(t n, t1) � � � r�(t n, t n)

0B@
1CA (2:4)

where _xt k denotes the time derivative of xt k and ek is the kth unit

vector. Again, without loss of generality, r�(t k , t l) � r�1 (t k , t l) repre-

sents the evolutionary success of a t k-individual when paired with a t l-

individual (for all k, l � 1, . . ., n). One may now look for population

states x�(ô) which are stable or asymptotically stable ®xed points of the

dynamics (2.3).10

We have shown in these examples how to solve GE (and thus Ã) via

a static or a dynamic solution concept. Other solution concepts for

indirect evolutionary games suggest themselves: since GE is formally no

different than in usual direct evolutionary games one can transfer other

static solution concepts and de®ne, for example, neutral evolutionarily

stable strategies (NESS), limit evolutionarily stable strategies (LESS) or

evolutionarily stable sets for indirect evolutionary games. Furthermore,

all dynamic solution concepts which are common in evolutionary game

theory can be applied to analyze indirect evolutionary games as well. On

the other hand, solving an indirect evolutionary game faces the same

problems as for direct evolutionary games, and the choice of a solution

concept will depend on the speci®cs of the game GE at hand. Impor-

tantly though, deriving GE from Ã does not raise any issues regarding

the solution of GE other than what is known for direct evolutionary

games.

2.4 Example 1: Symmetry and ESS

As an example of a symmetric two-player indirect evolutionary game we

investigate whether ®rm owners who care not only for pro®t but also for

consumer surplus may survive evolution. The base game is modeled as a

duopoly market. Consider two duopolists (players 1 and 2) playing a

Cournot game on a homogeneous market. Their quantity choices are s1

10 Roughly, a ®xed point x�(ô) (i.e. a point at which the right-hand side of the equations in

(2.3) vanish) is stable if a small perturbation of the population mixture cannot lead far away

from x�(ô), and the ®xed point is asymptotically stable if it is stable and if any suf®ciently

small perturbation is followed by a movement back to x�(ô).
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and s2 with si 2 Si � [0, 1
2
]. We assume a linear demand function which

is suitably normalized such that player i's pro®t ði is given by

ði(si, sj) � (1ÿ si ÿ sj)si

for i, j 2 f1, 2g, i 6� j. Player i's preferences are described by the

following utility function:

ui(si, sj, ti) � ti ði(si, sj)� (1ÿ ti)C(si, sj)

where

C(si, sj) �
� s1�s2

0

(1ÿ y)dyÿ (1ÿ si ÿ sj)(si � sj)

is net consumer surplus and with ti 2 [1
2
, 1]. Thus, player i is not only

concerned with his own pro®t but also with the welfare of consumers.

Speci®cally, i's utility is a weighted average of his own pro®t and

consumers' surplus. The weight ti is an individual preference parameter

(i's type). It is observable and is the object of evolution; i.e. ti will

spread according to the evolutionary success of player i.11 Note that the

speci®cation of the utility function allows for preferences that are usually

assumed in economics. Namely, for ti � 1 player i only cares about his

own pro®t.

Given preference parameters t1, t2 for the two players, the strategy

spaces Si and the utility functions ui de®ne the base game GB(t1, t2) of

an indirect evolutionary game Ã . Furthermore, by identifying Ti � [1
2
, 1]

we have a type space, so that the only missing component for an indirect

evolutionary game is the evolutionary success function ri. We assume

that

ri(si, sj) � ði(si, sj)

So, evolutionary success is given by monetary success. From an econo-

mist's perspective this is certainly a natural assumption: while individuals

may entertain various kinds of subjective preferences as captured by ui,

the long-run survival of a preference type and the associated strategy

11 Within this model ui does not (directly) depend on tj. This is just a special case of the

class of functions ui(si, sj, ti, tj) that was assumed in the general description of indirect

evolutionary games we gave above.
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choices depend on their monetary consequences. We think that measuring

evolutionary success by monetary payoff is a very useful speci®cation of

an indirect evolutionary game and we will discuss it later.

Having de®ned all components of the indirect evolutionary game the

solution is derived as follows. Maximizing ui with respect to si gives the

system of ®rst-order conditions

@

@si

ui(si, sj, ti) � si(1ÿ 3ti)� sj(1ÿ 2ti)� ti � 0

for i � 1, 2, which can be solved for equilibrium strategies s�i (t):12

s�i (t) � s�i (ti, tj) � titj � tj ÿ ti

5titj ÿ tj ÿ ti

for i, j � 1, 2. Note that s�i (ti, tj) > 0 for ti, tj 2 [1
2
, 1].

The functions s�i (t) characterize a unique solution for every base game

GB(t) of the indirect evolutionary game Ã . Substituting s1 and s2 in

ri(s1, s2) by s�1 (t) and s�2 (t) gives the following indirect evolutionary

success function r�i (ti, tj):

r�i (ti, tj) � ri(s
�
i (t), s�j (t)) � (3titj ÿ tj ÿ ti)(ti tj � tj ÿ ti)

(5ti tj ÿ tj ÿ ti)2

for i, j � 1, 2. The type spaces Ti together with r�i de®ne the symmetric

direct evolutionary game GE that is associated with Ã . Without loss of

generality we consider r�(t k , t l) � r�1 (t k , t l) as a t k-individual's evolu-

tionary success when matched with a t l-individual (with t k , t l 2 T1). In

order to derive an ESS t k� (see Maynard Smith (1982)) we ®rst have to

solve the following ®rst-order condition:

@

@ t k
r�(t k , t l) � 0

for

t k � t l(4t l ÿ 1)

8(t l)2 ÿ 5t l � 1
:

12 Since @2 ui(si, sj, ti)=@s2
i � 1ÿ 3ti, the second-order condition for a maximum is satis®ed

if ti . 1
3
, which holds by de®nition.
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Setting t k � t l � t k� and solving the resulting quadratic equation with

respect to t k� results in two candidates for an ESS of GE (and thus of

Ã): t k� � [9�p(17)]=16 or t k� � [9ÿp(17)]=16. Since [9ÿp(17)]=16

, 1
3

the second candidate is not feasible given the de®nition of T1. So,

only the candidate t k� � [9�p(17)]=16 remains. The stability require-

ment (2.1), i.e. r�(t k�, t k�) > r�(t k , t k�), is equivalent to [16t k ÿ
9ÿp(17)]2 > 0 which is always satis®ed. Moreover, since r�(t k�,
t k�) � r�(t k , t k�) is satis®ed only for t k � t k� the stability requirement

(2.2) is also ful®lled. Thus we have the following.

Proposition 1. In the symmetric indirect evolutionary game as de®ned

above t k� � [9�p(17)]=16 � 0:82 is the unique evolutionarily stable

strategy.

Proposition 1 says that within our model of evolution based on duopoly

interaction only those types of ®rm owners survive evolution who care for

consumer welfare. Egoistic preferencesÐas they are assumed throughout

most of economic theorizingÐwould die out in such markets.

2.5 Asymmetric games

We will now show how to solve asymmetric two-player indirect evolu-

tionary games with observed types. These are games Ã in which one or

several of the following inequalities hold:

S1 6� S2

T 1 6� T 2

u1(s1, s2, t1, t2) 6� u2(s2, s1, t2, t1)

or

r1(s1, s2) 6� r2(s2, s1):

We keep the assumption of a single-population model. Each individual

of the population will be paired with one other individual. One of the

paired individuals is assigned role 1 while the other is assigned role 2. It

is assumed that each of the two role assignments is equally likely.

Within asymmetric games it is important to read si as role i's strategy
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to distinguish it from an individual j's strategy ( j � 1, 2) which shall be

de®ned as the individual j's behavior strategy s j:

s j � (s
j
1, s

j
2):

Here s
j
1 (s

j
2) is individual j's strategy when assigned player role 1 (role

2). Analogously, one can de®ne individual j's type vector t j:

t j � (t
j
1, t

j
2):

The vectors s j and t j will become important when we analyze GE which

is the direct evolutionary game associated with Ã (see below). However,

we drop the superscript index for the individual whenever this should

not cause confusion. In solving the asymmetric game Ã we solve

GB(t1, t2) � ((Si, ui)i�1,2)j( t1, t2)

for all t � (t1, t2) 2 T . The solution is s�(t) � (s�1 (t), s�2 (t)) for all

t 2 T .

The equilibrium strategy pro®le s�(t) can be inserted into ri(s) to give

the indirect evolutionary success function r�i (t) � ri(s
�(t)). Accordingly

the game

GE � ((Ti, r�i )i�1,2)

associated with Ã is now a direct evolutionary game with role asymme-

try. In solving GE (and thus Ã) we therefore have to apply methods that

are suited for asymmetric games (see for example Weibull (1995, pp.

64) or Selten (1980)). We consider two individuals (players) j � 1, 2

who are characterized by their type vectors t1 � (t1
1, t1

2) and t2 � (t2
1, t2

2),

respectively. We call (t1 3 t2) a pairing and (t1
1, t2

2) the match in which

player 1 is assigned to role 1 and player 2 is assigned to role 2.

Accordingly, (t2
1, t1

2) is the match in which player 1 has role 2 and

player 2 has role 1. We can distinguish the equilibrium strategy pro®les

(of the base games GB(t)) for both matches as

s�(t1
1, t2

2) and s�(t2
1, t1

2)

and furthermore the indirect evolutionary success of each player in each

match:
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r�1 (t1
1, t2

2), r�2 (t1
1, t2

2)

and

r�1 (t2
1, t1

2), r�2 (t2
1, t1

2):

The indirect evolutionary success of player 1, respectively player 2, in

the pairing (t1 3 t2) will thus be determined as the expected success of

both matches:13

r1�(t1 3 t2) � 1
2
r�1 (t1

1, t2
2)� 1

2
r�2 (t2

1, t1
2)

and

r2�(t1 3 t2) � 1
2
r�1 (t2

1, t1
2)� 1

2
r�2 (t1

1, t2
2):

Note that r1�(t1 3 t2) � r2�(t2 3 t1); thus, by assuming that each match

is equally likely and determining evolutionary success as the expected

success of both matches we have essentially removed the asymmetry.

Without loss of generality we can now interpret r�(t k 3 t l) �
r1�(t1 3 t2) with t k , t l 2 T � T1 3 T2 as the evolutionary success of an

individual who is endowed with type vector t k within a population of t l-

individuals.14 We are now ready to look for a solution of GE according

to, for example, the notion of ESS or some other static or dynamic

solution concept. Thus, a solution of Ã (when a unique solution exists)

will be a type vector t k� � (t k�
1 , t k�

2 ) (i.e. the solution of GE) together

with the associated solution strategies s�1 (t k�
1 , t k�

2 ) and s�2 (t k�
1 , t k�

2 ). This

illustrates that the solution of asymmetric games ®ts into the general

de®nition of a solution for indirect evolutionary games as given above.

We want to remark that the formal requirement that an individual is

endowed with a type vector t j does not necessarily imply role-dependent

types nor that T1 and T2 have to be regarded as two separate mutation

spaces where a mutation of the role 1 type is independent of a mutation

of the role 2 type. For instance, a quite plausible restriction is to require

t
j
1 � t

j
2, i.e. an individual's type is independent of its role. It was applied

by KoÈnigstein (2000) for example in a study on the evolution of altruism

13 This is the usual assumption in direct evolutionary games with role asymmetry.
14 Note that t k , t l now represent elements of T while in symmetric games these variables

were used to denote elements of T1.
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within an asymmetric bargaining game. The restriction that the degree of

altruism is independent of an individual's role within a bargaining

procedure seems reasonable. Formally, such a restriction means that

t j 2 T j � T � T1 3 T2; i.e. the mutation space T j � ft jjt j 2 T , t
j
1 �

t
j
2g for individual types t j is a subspace of T .

2.6 Example 2: Asymmetry and replicator dynamics

The following example serves two purposes: it shows how to handle

asymmetric games and it shows how dynamic solution concepts can be

applied. We consider the game shown in ®gure 1 and, following Gale et

al. (1995), we refer to it as the `ultimatum minigame'. In this game

`role 1' ®rst proposes how to divide a pie of size c . 0.15 The choice

labeled F represents a fair offer, inducing an equal split of c. The

choice U (unfair offer) results in an uneven split of c given that `role 2'

subsequently chooses A (accept). In this case, 1 earns (1ÿ å)c while 2

gets åc with 0 , å, 1
2
. If, instead, 2 chooses R (reject), then both roles

earn nothing. These payoffs are monetary payoffs and they are assumed

Figure 1: Ultimatum minigame

15 We use the term `role i' instead of `player i' here to avoid confusion; remember that a

player in an indirect evolutionary game is an individual person out of a large population

who gets assigned either of the two roles.
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to be the measure of evolutionary success. However, each individual has

a utility function of the following kind: in the case of rejection the role

2 utility is t2 with t2 2 fm, mg and 0 < m < m, whereas the role 1

utility is t1 � 0 (i.e. it is equal to monetary payoff for all individuals).

For all other cases utility is equal to monetary (and thus evolutionary)

payoff. Thus ®gure 1 shows utility payoffs. The parameters m and m

can be thought of as measuring 2's `feeling of revenge' when rejecting

an unfair offer: if t2 � m this means that the individual acting in role 2

has a strong feeling of revenge; otherwise it has a weak feeling of

revenge (t2 � m). To make things interesting we will assume furthermore

m , åc , m.

With these de®nitions we have essentially modeled an asymmetric

two-player indirect evolutionary game with observed types Ã �
((Si, Ti, ui, ri))i�1,2. For clearer exposition we will write down its compo-

nents explicitly:

S1 � fF, Ug S2 � fA, Rg
T1 � f0g T2 � fm, mg

(u1, u2) �

(1
2
c, 1

2
c) for (s, t) 2 f(F, A), (F, R)g3 f(0, m),

(0, m)g
((1ÿ å)c, åc) for (s, t) 2 f(U , A)g3 f(0, m), (0, m)g
(0, t2) for (s, t) � f(U , R)g3 f(0, m), (0, m)g

8>>>>><>>>>>:
(r1, r2) �

(1
2
c, 1

2
c) for s 2 f(F, A), (F, R)g

((1ÿ å)c, åc) for s � (U , A)

(0, 0) for s � (U , R)

8>><>>:
To solve the game Ã we ®rst solve the associated base games

GB(t1, t2) for the equilibrium strategies.16 Rationality (i.e. utility max-

imization given individual types) implies the following subgame perfect

equilibrium strategies:

(s�1 (t1, t2), s�2 (t1, t2)) � (U , A) for t2 � m

(F, R) for t2 � m

�
(2:5)

16 Since T1 is a singleton we do not need t1 as an identi®er of a generic element of T1.

But, for the sake of exposition, we will use it nevertheless.
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This describes the solution for every base game GB(t1, t2). By evaluating

ri(s) at s�(t) we get the asymmetric direct evolutionary game

GE � ((Ti, r�i )i�1,2) with the indirect evolutionary success functions

(r�1 (t1, t2), r�2 (t1, t2)) � ((1ÿ å)c, åc) for t2 � m

(1
2
c, 1

2
c) for t2 � m

�
(2:6)

Since GE is asymmetric we consider player j � 1, 2 as being endowed

with type vector t j � (t
j
1, t

j
2) � (0, t

j
2). Pairing (t1 3 t2) results in one

of the two possible matches (t1
1, t2

2) � (0, t2
2) or (t2

1, t1
2) � (0, t1

2) with

each match being equally likely. The `ultimatum minigame with random

role assignment' is illustrated in ®gure 2.

The indirect evolutionary success of player 1 in a pairing with player

2 (r1�(t1 3 t2)) is described by the following matrix where rows refer to

t1 and columns refer to t2:

(0, m) (0, m)

(0, m) 1
2
c 1

4
(1� 2å)c

(0, m) 1
4
(3ÿ 2å)c 1

2
c

(2:7)

The cell entries represent player 1's evolutionary success in a pairing

Figure 2: Ultimatum minigame with random role assignment
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with 2. To show how to get these formulae we derive r1�
(t1 3 t2) � r1�((0, m) 3 (0, m)), i.e. the evolutionary success of player 1

with t1
2 � m when paired with player 2 with t2

2 � m. The other payoffs

can be calculated similarly. Note ®rst that player 1's role 1 success

r1�
1 (t1

1, t2
2) is determined in match (t1

1, t2
2) by the strategy pro®le

(s1�
1 , s2�

2 ) � (F, R) (see (2.5)); the result is r1�
1 � 1

2
c (see (2.6)). Player

1's role 2 payoff r1
2 is determined in match (t2

1, t1
2) by the strategy

pro®le (s2�
1 , s1�

2 ) � (U , A) (see (2.5), and note that in this model it is

the type of the role 2 player that determines the equilibrium strategies);

the result is r1�
2 � åc (see (2.6)). Therefore r1�((0, m) 3 (0, m)) �

1
2
r1�

1 � 1
2
r1�

2 � 1
4
(1� 2å)c.

To illustrate the use of a dynamic solution concept we apply the

replicator dynamics to solve GE (and thereby Ã). Let the state of the

population at time ô be x(ô) � (xm(ô), x m(ô)) � (xm(ô), 1ÿ xm(ô)) where

xm(ô) is the population share of (individuals endowed with) type vectors

(0, m) at time ô.17 With the payoff matrix given in (2.7) the replicator

dynamics (2.3) become

_xm � 1
4
c(1ÿ 2å)xm(xm ÿ 1)

_x m � ÿ _xm

(2:8)

For all xm(0) . 0 the solution of the system of ordinary differential

equations in (2.8) is given by

xm(t) � 1

1� c1 exp(at)
x m(t) � 1ÿ xm(t)

where c1 � [1ÿ xm(0)]=xm(0) > 0 and a � 1
4
c(1ÿ 2å) . 0 since

0 , å, 1
2
.

The population states x � (1, 0) and x � (0, 1) are the only ®xed

points of system (2.8). Since for every xm(0) . 0 it holds that c1 . 0, it

follows that lim t!1xm(t)! 0, i.e. the population state (0, 1) is globally

stable. Thus, if initially only a single type vector is present in the

population, this state does not change over time as long as no other type

vector appears via mutation. In every mixed population the (0, m)-

individuals are more successful than the (0, m)-individuals. Therefore the

population share of the latter will converge to 0 over time. In the long

17 Note here that for convenience we use m and m, respectively, as a shorthand for (0, m)

and (0, m), respectively.
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run the population will consist only of (0, m) individuals, i.e. of players

that exhibit strong feelings of revenge when rejecting an unfair offer.

Furthermore, the associated strategy choices are such that only fair offers

occur and that unfair offers will be rejected. We summarize these results

by formulating the following proposition.

Proposition 2. The population state x � (xm, x m) � (0, 1) is globally stable

in the replicator dynamics, i.e. for all completely mixed initial conditions

the population will consist only of (0, m)-individuals for t!1.

Note that Huck and Oechssler (1999) also investigate a version of the

ultimatum minigame using the indirect evolutionary approach. They

assume a ®nite population of players interacting in small groups and relax

the assumption of observable types. Under speci®c assumptions regarding

the dynamics used they show that if the maximal group size is suf®ciently

small almost all proposers will offer the fair split in the long run (for

arbitrary initial conditions). So, their result is in line with the one above.

3. DISCUSSION

We summarize that the IEA allows us to model endogenous preferences

and to study their evolution.18 The reproduction of preferences depends

on the strategy choices which they induce. Therefore, evolutionary

success depends indirectly rather than directly on the preference types.

We have presented a unifying description of two-player indirect evolu-

tionary games with observed types, which clari®es the conceptual links

between different applications one ®nds in the literature. The IEA is a

combination of existing methods of modeling and analyzing human

behavior. We have shown how to model such games and how the

solution concepts known from game theory and (direct) evolutionary

game theory can readily be applied.

The process of evolution is not necessarily to be interpreted as

biological evolution. One might just as well think of it as social

evolution: `Memes (ideas, learning rules, behavioral norms, etc.) are just

as much the object of evolutionary pressures as genes, but memes

18 There are other approaches to explaining the change of preferences. For instance, see

Bowles (1998) for a recent review of models and evidence on the impact of economic

institutions on preferences. We see this work as complementary.
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multiply through imitation [italics in original] rather than physical

replication' (Binmore (1988, p. 16), paraphrasing Dawkins (1976)). This

interpretation of evolution may lead to applications of the IEA which we

®nd quite appealing: namely, to model the development of social norms

within a society, and to show how this depends on the strategy choices

which the norms induce, e.g. a norm may be thought of a special kind

of preference. Within social interaction, individuals are not programmed

to choose certain actions independent of their own norms and those of

other interacting persons, but may derive choices taking these norms into

account. Thus, in the short run, human behavior depends on existing

norms. However, in the long run, the norms themselves may change.

The spreading of new (and old) norms within a society may depend on

their material (e.g. monetary) success. In our opinion it is especially this

view upon the dynamics of social behavior which renders the IEA a

useful modeling tool: the combination of rational behavior and social

evolutionary dynamic.

One might wonder whether the change of preferences or norms could

also be modeled as rational choice rather than evolution. We acknowl-

edge that this may be possible. But there are phenomena (like changes

in fashion, tastes, corporate culture etc.) that seem better described, for

instance, as imitation processes rather than rational choice. Furthermore,

evolutionary solution concepts and rational choice concepts do not

coincide, in general.

On the other hand, from the perspective of direct evolutionary game

theory one might wonder about substituting the rational choice part of

the IEA by another evolutionary process. Namely, rational choice based

on preference types as it is captured by the equilibrium strategy s�i (t)

can be thought of as a behavioral rule which is parametrized by t.

Instead of deriving s�i (t), as we did here, one could start out by

modeling a space of such rules, which would be the usual direct

evolutionary approach. Huck and Oechssler (1999) show for a simple

example how this can be achieved. However, they also show that the

solution of the direct evolutionary model and the solution of the indirect

evolutionary game do not necessarily coincide. Moreover, we view the

incorporation of rational choice as a structural advantage of the IEA

compared with pure evolution. After all, human beings are endowed with

a cognitive system that allows for behavioral adjustments based on

reasoning.

It may nevertheless be fruitful to think of relaxing the assumptions

underlying the rational choice part of solving an indirect evolutionary

game. For instance, following Binmore (1988) one might attempt `to
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model the thinking processes of players explicitly' (p. 10, italics in

original). This leads to a dynamic process by which equilibrium may be

reached, and which Binmore refers to as `eductive libration' (p. 11). He

distinguishes this process from that of `evolutive libration', which

represents the equilibrating processes assumed by the direct evolutionary

approach. He argues that there are two kinds of environments (eductive

or evolutive) in which the one or the other process applies. Assuming

rational choice, as we do here, and consequently applying game theoretic

equilibrium concepts can be thought of as one (extreme) form of

eductive libration; one might very well think of other speci®cations.

Furthermore, the IEA suggests that eductive and evolutive environments

may not exclude each other. Rather, both types of libration processes

may be present at the same time. Speci®cally, the IEA might be

extended by substituting the rational choice part by eductive libration.

In the examples above, we assumed that evolutionary success is

represented by monetary payoff. This is not required to apply the IEA.

The formalism allows for any other speci®cation of the evolutionary

success function. However, all applications we are aware of used

monetary payoff as the success measure. Furthermore, since income

levels can be observed relatively easily within a society this seems a

natural speci®cation, especially within economic models.

Finally, we want to point to two important restrictions of our presenta-

tion: we assumed in®nite populations and observability of preference

types. Evolution in ®nite populations and/or imperfect observability of

types requires a richer description of an indirect evolutionary game than

we allowed. For applications of such models see, for example, Huck and

Oechssler (1999) or GuÈth and Kliemt (1994).
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