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Abstract

In this note we take a first step towards the analysis of collusion in markets with s
competition, focusing on the case of pure location choices. We find that collusion can o
profitable if a coalition contains more than half of all players. This result holds for location g
played ink-dimensional Euclidean space as long as consumers are distributed via atomless
functions. For competition on the unit interval, unit circle, and unit square we also derive suf
conditions for collusion to be profitable. The results have immediate implications for merg
spatial markets.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

While the economics literature has paid considerable attention to collusion in Be
and Cournot markets, collusion with different sorts of competition has been la
neglected. In this note we take a first step towards the analysis of collusion in pure lo
games as introduced by Hotelling [5]. Such models capture competition in many imp
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industries where price competition is not feasible, for example, because of regulat
in the case of pharmacies) or vertical restraints (as in the case of book sellers).1

Our results are based on an approach that relies on rather weak rationality require
In particular, we do not solve the non-cooperative game in which some of the p
can reach binding agreements. Instead, we simply require that players will only dec
collude if they canguarantee themselves a payoff better than the payoff expected “be
the veil of ignorance.” The reason for this approach is simple: it is as we will see extre
difficult to find Nash equilibria for location games with collusion. We argue that in
absence of reliable non-cooperative solutions players should be conservative an
collude if they know for sure that this will be profitable. Accordingly, our definition
profitability relies on a maxmin approach. Nevertheless, we include one section on
equilibrium where we show that, in those few cases where we can find one, the
cooperative solution coincides with ours.

For linear and circular cities with a uniform distribution of consumers we find
collusion is profitable if and only if more than half of the players collude. Part of this r
can be generalized to location games in multi-dimensional spaces with arbitrary d
functions: As long as the distribution of consumers is atomless, collusion can on
profitable if more than half of all firms cooperate. For competition on the unit interval
circle, and unit square we are also able to derive sufficient conditions for collusion
profitable. These results are of considerable relevance for the topic of merger in m
with limited price competition.

The remainder of the paper is organized as follows. Section 2 introduces the g
setup and notation. Section 3 deals with the simplest one-dimensional cases, i.e
linear and circular cities with uniform consumer densities. Section 4 deals with the g
multi-dimensional case and establishes the main theorem of the paper.2 Section 5 adds
sufficient conditions for collusion to be profitable in games on the unit line, unit c
and unit square. Section 6 discusses Nash equilibria for location games with collusi
Section 7 concludes.

2. Setup and definitions

LetΓ (O,P ) be a location game on the connected subsetO ⊆ R
k with set of playersP .

Let pi ∈ P be playeri with i = 1,2, . . . , n. Each playerpi chooses a locationxi ∈ O .
Consumers are distributed overO via a Lebesgue measurable density functionf with
total mass 1. Letd(o, o′) be the distance between two pointso, o′ ∈ O . Each consumer i
assumed to buy one unit of an unspecified good from the player closest to her. Th
consumer ato ∈O buys from playerpi only if d(o, xi)= minj d(o, xj ). If there are more

1 They can also be applied to parliamentary elections that are not winner-take-all contests.
2 Note that the pioneering work by Eaton and Lipsey [4], Okabe and Suzuki [9], Okabe and Aoyagi [

Aoyagi and Okabe [1] on the stability of configurations of firms inR
2, while not used directly in the proof of ou

main result regarding the general multi-dimensional case, provide a base for the study of market sets i
dimensions. Furthermore, Okabe and Aoyagi [8] was used more directly (by way of Knoblauch [7]) in ou
on the unit square.
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than one closest player then the consumer is assumed to buy from each closest pla
the same probability. The price of the good is fixed at 1 and production costs are norm
to zero.

Let Oi(Γ ) = {o | d(o, xi) = minj d(o, xj )}. Playerpi ’s market share and profit is the
given byπi(Γ )= (1/ri)

∫
Oi f (o)do whereri denotes the number of players located atxi .

By assumption,
∑

i π
i = 1. By virtue of this fact, we say that a player’s expected pa

before the game is actually played (“behind the veil of ignorance”) is 1/n.3

Next we define for integerm with 1 � m< n a setV (m) of reals withv ∈ V (m) if there
is a collusion strategy for a setM ⊆ P of m players thatguarantees them a total payoff of
at leastv. Let v(m) = supV (m).4

Definition 1. Collusion of a set ofm players is profitable ifv(m) > m/n.

Thus, collusion is profitable if themaxmin payoff of a coalition of sizem is strictly
greater than the expected non-cooperative equilibrium payoff when equilibrium pos
are assigned randomly. This is a conservative approach that rules out any unp
surprises for the set of colluding players. In a framework where multiplicity of equil
is to be expected and where computation of non-cooperative equilibria is very har
appears rather appealing. And it becomes even more appealing once we have sho
the maxmin strategy of a coalition (that is large enough) has a very simple and in
structure.

One implication of our definition is the following.

Remark 1. Collusion of all players (the “grand coalition”) is never profitable.

This follows immediately from the observation that the location game is a constan
game. In contrast to Cournot or Bertrand games total industry profits cannot be manip
by contracting output or raising price.

3. The one-dimensional case with uniform distributions

3.1. Linear cities

Let us first consider the standard textbook case of a “linear city” in whichO = [0,1]
and in which consumers are uniformly distributed. How can a set ofm players guarante
itself a “high” payoff? Supposem> n−m, i.e., suppose that more than half of all firms a
in the set of colluding players. In that case the colluding players can minimize the p
obtainable to a firm outside the coalition by “evenly spreading out.” Iff is uniform, the
firms in the set can guarantee themselves a payoff of(3m−n)/(2m) by locating themselve
at (k,3k,5k, . . . ,1− k) with k = 1/(2m). To see this, note that in this case a firm outs

3 For example, a player could expect that every assignment of players to equilibrium locations is equally
4 In other words,v(m) is the maxmin payoff of the coalition.
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the setM is indifferent between all possible locations as each location yields a pay
1/(2m). Furthermore, the worst thing that can happen to the players inM is that the firms
outside locate in different intervals, say, one betweenk and 3k, one between 3k and 5k
and so on. If they do, the players inM earn 1− (n − m)/(2m) = (3m − n)/(2m). And
as this is larger thanm/n for m> n/2 collusion turns out to be profitable. Thusm> n/2
is sufficient for collusion to be profitable in linear cities with a uniform distribution
consumers. That it is also necessary in this case is stated in

Proposition 1. In linear cities with a uniform distribution of consumers collusion is
profitable if and only if n >m> n/2.

Proof. The argument above shows thatm > n/2 ⇒ v(m) > m/n. Next observe that, b
definition,

v(m)+ v(n−m)� 1. (1)

Hence,m = n/2 ⇒ m = n − m ⇒ v(m) � 1/2 = m/n, i.e., collusion is not profitable i
exactly half of all firms cooperate. The proof is completed by showing that collusi
also not profitable ifm< n/2: If 1 � m< n/2, thenn/2< n − m � n − 1 so that by the
first part of the proofv(n−m) > (n−m)/n. Therefore, by Eq. (1),v(m) < 1− (n−m)/n

=m/n. ✷
3.2. Circular cities

A further popular space to study location games on is a circle. In contrast to the lin
of m colluding firms can divide a circle into at mostm arcs as opposed tom+ 1 segments
on the line. Nevertheless, one obtains the identical condition for collusion to be profi

Proposition 2. In circular cities with a uniform distribution of consumers collusion is
profitable if and only if n >m> n/2.

Proof. Position the colluding firms such that there arem arcs with mass 1/m each. If
m � n/2, the maximum total payoff the non-colluding firms can obtain is(n −m)/(2m),
i.e., by using this strategy the colluding firms can ensure a payoff of(3m−n)/(2m) which
is greater thanm/n if m> n/2. Using Eq. (1) again completes the proof.✷

4. The multi-dimensional case

The following result is the main result of the paper. It generalizes one of the two ins
gained above, namely that collusion in location games can only be profitable if mor
half of all firms cooperate. This result holds for arbitrary bounded, connected and c
open subsets ofRk and for arbitrary bounded atomless density functions.

Theorem 1. Suppose consumers are distributed over a bounded and convex open subset
O ⊆ R

k via a bounded Lebesgue measurable density function f of total mass 1. For the



A. Huck et al. / Journal of Urban Economics 54 (2003) 499–510 503

g
t
-
n

ff

,

nal

l

f

able if

an
n these
acket

rem 1
n-player location game Γ (O,P ) it is not profitable for a set of m players to collude if
m� n/2.

Proof. Suppose them colluding playersp1,p2, . . . , pm locate atx1, x2, . . . , xm ∈O , not
necessarily distinct.

Case 1: n − m � 2m. Then for eachi, 1 � i � m, let pm+2i−1 andpm+2i locate at
xm+2i−1 andxm+2i , two pointsε units apart on a line throughxi , with xi betweenxm+2i−1

andxm+2i andε chosen as follows. LetB be ak-dimensional ball containingO and letA
be the(k − 1)-dimensional volume of the(k − 1)-dimensional disk formed by intersectin
B with a hyperplane through its center. Chooseε such thatε < 1/(nA supf ) and such tha
ε is small enough to guaranteex2m+i−1, x2m+i ∈ O for 1 � i � m. Let the rest of the non
colluding players,p3m+1,p3m+2, . . . , pn locate anywhere inO . Since the consumers wo
bypi , 1� i � m, lie between two hyperplanesε units apart,πi is at mostεAsupf < 1/n.
Hence,v(m) <m/n.

Case 2: m < n − m < 2m. For 1� i � m, define the provisional market setOi
prov =

Oi(Γ ′) with Γ ′ = Γ (O,M), i.e., Oi
prov contains the points inO that are nearer toxi

than to any otherxj �= xi with both i, j � m. Accordingly, define the provisional payo
πi

prov = πi(Γ ′). Without loss of generality assume that the sequenceπ1
prov,π

2
prov, . . . , π

m
prov

is non-decreasing. Now locate 3m − n of the non-colluding players atx1, x2, . . . , x3m−n

and use the remaining 2n−4m players to bracketx3m−n+1, x3m−n+2, . . . , xm as in Case 1
but do net yet chooseε. Notice that

(i) 3m− n > 0;
(ii) 2n− 4m> 0;
(iii) (3m− n)+ (2n− 4m)= n−m; and
(iv) (3m− n)+ (2n− 4m)/2=m.

Since the sequenceπ1
prov,π

2
prov, . . . , π

m
prov is non-decreasing, the sum of the provisio

payoffsπ1
prov + π2

prov + · · · + π3m−n
prov is at most(3m − n)/m. Therefore, the final tota

payoffs to the colluding players
∑m

i=1π
i is at most(3m − n)/2m + ε(n − 2m)Asupf .

Now notice that(3m − n)/(2m) < m/n. Hence, it is possible to chooseε such that
m/n− ∑m

i=1π
i > 0. Collusion is not profitable.

Case 3: m = n − m. Nonprofitability follows from Eq. (1) as in the proof o
Proposition 1. ✷

Thus, we know that collusion in location games (on bounded open subsets ofR
k in

which consumers are distributed via atomless density functions) can only be profit
more than half of all firms join the setM.

Remark 2. Note that neither the closed interval[0,1] nor a circle is an open subset of
Euclidean space. However, the conclusion of the theorem holds for location games o
sets, since the techniques of the proof apply. More particularly, it is possible to br
colluding players as in the proofs. In fact, a colluding player at 0 or 1 in[0,1] can be
bracketed by a single non-colluding player. Note, furthermore, that the proof of Theo
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would not work without requiring boundedness of the open subsetO ⊆ R
k. Without this

assumption the volumeA defined in the proof (and occurring in the definition ofε) would
be infinite.

Remark 3. The theorem concerns location games defined using Euclidean distance
straight line distances. Implicitly, this means that consumers may travel along route
do not belong toO . However, the theorem applies, for example, to a circle (or rathe
conclusion of the theorem holds—see Remark 2) even when the distance betwe
points is the length of the arc joining them, since for a circle inR

2 a consumer’s neare
player is the same whether distance is defined as Euclidean distance or as arc leng

The theorem disallows atoms of consumers. The following example demonstra
necessity of this assumption.

Example. Consider the 5-player location game on[0,1] with two consumers, one at 1/4
and one at 2/3. Supposep1 andp2 collude by locating at 1/4 and 2/3, respectively. Thei
worst total payoff occurs whenp3 andp4 locate at 1/4 andp5 locates at 2/3. The total
payoff of p1 andp2 is then 1/3 + 1/2 = 5/6 which is greater than the veil of ignoran
expected payoff of 2(2/5)= 4/5. Collusion is profitable withm= 2 even thoughm< n/2.
As in the proof of Proposition 1, where it is shown that the complement of a profitab
of colluding players is unprofitable, collusion is unprofitable form= 3, even though in tha
casem> n/2.

5. Sufficient conditions for unit interval, unit circle, and unit square

The main theorem above showed thatm > n/2 is necessary for collusion to b
successful. In the following we will establish sufficient conditions for collusion to
profitable in a location game played on the unit interval, the unit circle, and the unit sq
Notice that in each case the solution prescribes that the colluding players behave ac
to the above identified strategies, i.e., they will evenly spread out making other p
indifferent between locations.

Proposition 3. In linear cities, collusion is profitable if supf/ inf f < 2m/n and m< n.

Remark 4. Note that supf/ inf f � 1. Thus, the condition in Proposition 3 ensures t
m> n/2.

Proof of Proposition 3. Without loss of generality, letx1 � x2 � · · · � xm be the set of
locations occupied by the colluding players chosen so that

x1∫
f (o)do= 1

2

x2∫
1

f (o)do= 1

2

x3∫
2

f (o)do= · · · =
1∫

m

f (o)do= 1

2m
.

0 x x x
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If a non-colluding player locates to the left ofx1 or to the right ofxm, his payoff is at
most 1/(2m) < 1/n. If a non-colluding player locates betweenxi andxi+1, his payoff is∫ d

c f (o)do wherexi < c < d < xi+1 andd − c = (xi+1 − xi)/2. Then

d∫
c

f (o)do� (d − c)supf = xi+1 − xi

2
inf f

(
supf

inf f

)
� 1

2

xi+1∫

xi

f (o)do

(
supf

inf f

)

<
1

2m

(
2m

n

)
= 1

n
.

If a non-colluding player locates atxi , 1� i � m, then he shares the market setOi with pi .
By the argument above, the portion ofOi to the left ofxi has consumer mass less than 1/n,
as does the portion ofOi to the right ofxi . Therefore, the payoff to each non-colludi
player is less then(1/n + 1/n)/2 = 1/n. Since in all these cases the payoff to a n
colluding player is less than 1/n, the total payoff to the colluding players is more th
1− (n−m)/n=m/n. Collusion is profitable. ✷

The sufficient condition in Proposition 3 is stronger than necessary. For instanc
used as an assumption onf only that

sup{f (x): xi < x < xi+1}
inf{f (x): xi < x < xi+1} <

2m

n
.

This allows any amount of variation to the left ofx1 and to the right ofxm and, if m is
large, betweenx1 andxm.5

Proposition 4. In circular cities, collusion is profitable if n >m> n/2 and supf/ inf f <

2m/n.

Proof. Analogous to the proofs of Propositions 2 and 3.✷
Finally, we look at location games played on the unit square with uniform cons

density.

Proposition 5. For the n-player location game on the square [0,1]×[0,1] with consumers
distributed uniformly, collusion is profitable if there is a positive integer h with (2h+1)2−
h2 � m< n< (2h+ 1)2.

5 Moreover, the firms located atx1 andxm could move further into the interior as the mass on the fringes
only to be smaller than 1/n. Using this, one can increase the allowed variation betweenx1 andxm from 2m/n to
[2(m − 1)/(n− 2)]m−1 > 2m/n. To see this, simply observe that the colluding players can position thems
so that the remaining mass betweenx1 andxm, 1− 2/n, is equally distributed overm − 1 intervals. The proof
then goes through with sup{f (x): xi < x < xi+1}/ inf{f (x): xi < x < xi+1} < 2(m − 1)/(n − 2). Therefore,
sup{f (x): x1 < x < xm}/ inf{f (x): x1 < x < xm} can be as large as[2(m− 1)/(n− 2)]m−1.
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Proof. Supposem,n andh satisfy the hypotheses of the theorem. Consider the setC of
points in [0,1] × [0,1] of the form ((i − 1/2)/(2h + 1), (j − 1/2)/(2h + 1)) where i
andj are integers, 1� i, j � 2h + 1, andi and j are not both even. There are exac
(2h + 1)2 − h2 points inC. Locate them colluding players so that there is at least o
of them at each point ofC (recall thatm � (2h + 1)2 − h2). In the course of proving
that an infinite square lattice is a Nash equilibrium for the location game in the
with consumers distributed uniformly, Knoblauch [7] proved that in the location gam
[0,1]× [0,1], any player with at least one opponent at each point ofC earns a payoff of a
most 1/(2h+ 1)2 so that the non-colluding players’ total payoff is at most

(n−m)

(2h+ 1)2
<

(n−m)

n
.

Hence,v(m) >m/n. ✷
Proposition 5 tells us that there are profitable coalitions for then-player location game

on [0,1] × [0,1] if n ∈ ((2h + 1)2 − h2, (2h + 1)2) for some positive integerh, that is,
if n ∈ (21,25) ∪ (40,49) ∪ (65,81) ∪ (96,121) ∪ (133,169)∪ (176,225)∪ (225,+∞).

There are only seven intervals since forh � 8 the intervals ((2h+ 1)2 −h2, (2h+ 1)2) and
((2(h+ 1)+ 1)2 − (h+ 1)2, (2(h+ 1)+ 1)2) overlap.

Proposition 5 implies a simpler but more restrictive sufficiency condition for profit
ity: m � (225/226)n. This condition is trivially sufficient forn < 226 and can be estab
lished as sufficient forn � 226 using the overlapping of the intervals. Furthermore,
largen, Proposition 5 says, roughly, that collusion is profitable ifm> 3n/4. This interpre-
tation follows from the fact that for largen there is an integerh such thatn < (2h+ 1)2,
(2h + 1)2/n ≈ 1, and((2h + 1)2 − h2)/n ≈ 3/4. For example, ifn = 1,000,000 choose
h = 500. Then(2h + 1)2 = 1,002,001 and(2h + 1)2 − h2 = 752,001. The proposition
says collusion is profitable ifm/1,000,000� 0.752001.

To find profitable coalitions in two dimensions for some values ofn not included in the
hypotheses of Proposition 5, one can replace[0,1] × [0,1] with any figure constructe
from finitely many copies of[0,3/(2h + 1)] × [0,3/(2h + 1)] with a coalition using
the eight locations((i − 1/2)/(2h + 1), (j − 1/2)/(2h + 1)), 1 � i, j � 3, i and j not
both even. The only requirement is that these squares are assembled with an ov
1/(2h+ 1) as in the proof of Proposition 5. For example for[0,1] × [0,3/(2h+ 1)] made
up ofh squares in a line, mimicking the proof of Proposition 5 the sufficiency conditio
profitability would be 3(2h+1)−h� m< n< 3(2h+1). Then ann-player location game
allows profitable coalitions for some 1-by-h rectangle ifn ∈ (13,15)∪(18,21)∪(23,27)∪
(28,33)∪ (33,+∞). The relation betweenm andn will always involve inequalities like
those in Proposition 5, since the little that is known about location games in dimen
restricts us to working with figures constructed of finitely many squares of equal si
each of which eight locations are used.

6. Nash equilibria

It is natural to ask why we chose to use the definition of profitability introduce
Section 2 in our study of collusion in location games. Why did we not take a stan
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approach and try to use the Nash equilibrium concept? We will see in this sectio
for a location game in which one player controls a coalition, establishing the existen
a Nash equilibrium is a difficult task. Fortunately, Proposition 6 below demonstrate
the profitability approach is a reasonable substitute for the Nash equilibrium conce
the very limited conditions under which we were able to establish the existence of a
equilibrium, the configuration of coalition firms and the payoff to the coalition are the s
as in the Section 3.1 demonstration that collusion is profitable on[0,1] for n >m> n/2.

Consider a location game on the unit interval[0,1] with consumers distribute
uniformly, played by several independent firms and one player who controls a set of
Can we find location strategies for the independent firms so that these strategies t
with the profitable collusion strategy identified above comprise a Nash equilibrium?

It is possible to answer this question in some special cases and we shall do this
However, in general the problem is very difficult, perhaps intractable.

The difficulty arises from two sources. The first thing one discovers when workin
the problem is that a Nash equilibrium requires mixed strategies for the independen
Unfortunately, due to the computational complexities, little is known about mixed stra
equilibria for location games on the unit interval. Shaked [12] constructed a mixed str
Nash equilibrium for three firms locating on[0,1], and there are nonconstructive existen
theorems by Dasgupta and Maskin [2,3] and Simon [13]. Second, the difficulty in fin
mixed strategy equilibria is compounded when one player controlsm locations, due to the
added computational complexity.

Prospects are even bleaker for location games with collusion in dimension 2 and h
Up to now, nothing has been published on location games in dimension 3 or abov
little on solutions for location games in dimension 2. Shaked [11] showed that there
pure-strategy Nash equilibria for a wide variety of 3-player location games in the p
Okabe and Suzuki [9] established the existence of a configuration of firms in a squa
satisfy a weak stability condition; Okabe and Aoyagi [8] proved that an infinite square
of firms in the plane is a Nash equilibrium for a uniform distribution of consumers; Ao
and Okabe [1] studied the relationship between the shape of a 2-dimensional market
configuration of an equilibrium in that market, and Knoblauch [6] catalogued all 3-p
equilibria on the 2-sphere when consumers are distributed uniformly.

In summary, the difficulty of finding mixed strategy equilibria for location gam
translates into difficulty for our problem-finding equilibria for location games w
collusion. It seems reasonable that firms that engage in games that game theor
unable to solve should choose rather conservatively when it comes to making big de
such as decisions about colluding or merging with others. We have therefore pro
profitability as a conservative criterion to be used by firms faced with collusion deci
or merger proposals.

Nevertheless, the following proposition answers the question posed at the begin
this section in the affirmative in the special case that the number of locations control
the “big” player is an integral multiple of the number of independent firms.

Proposition 6. Let G be a location game in which consumers are distributed uniformly
on [0,1] with density 1, players 1,2, . . . , n−m, are independent firms, player n−m+ 1
controls m locations and m = a(n − m) where a is a positive integer greater than 1. Let
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sn−m+1 be player n − m + 1’s strategy from Section 3.1, which picks locations at each
element of the set {k,3k,5k, . . . ,1 − k}, where k = 1/2m. For i = 1,2, . . . , n − m, let si
be player i’s strategy that assigns probability 1/a to each of the a points (2ai − 2a +
1)/2m, (2ai−2a+3)/2m, . . . , (2ai−1)/2m.6 Then (s1, s2, . . . , sn−m, sn−m+1) is a Nash
equilibrium of G.

Proof. Fix i ∈ {1,2, . . . , n − m}. Let H be a game likeG but with only two players, so
that 1 is an independent firm and 2 controlsm locations. Forx ∈ [0,1],

πG
i (s1, . . . , si−1, x, si+1, . . . , sn−m+1)� πH

1 (x, sn−m+1) � 1/2m

= πG
i (s1, s2, . . . , sn−m+1).

It remains to show that playern−m+ 1 cannot improve his payoff by a unilateral strate
change.

Let tn−m+1 be any pure strategy of playern−m+ 1. LetK be a game likeG but with
two players each of whom controlsm locations. Then by the definitions ofsi ,

n−m∑
i=1

πG
i (s1, s2, . . . , sn−m, tn−m+1)

= (1/a)
n−m∑
i=1

a∑
j=1

πG
i

(
s1, . . . , si−1, (2ai − 2a + 2j − 1)/2m,si+1, . . . , sn−m, tn−m+1

)

� πK
1 (sn−m+1, tn−m+1)/a.

The inequality follows from the fact that any consumer (or fraction of a consumer) aw
to the first player in gameK will contribute to one of the summands on the left side of
inequality. For example, supposetn−m+1 assigns three locations tok, two locations to
5k + 1/2 and no location to any point between. How does the consumer interval(2k,3k)
contribute to the two sides of the inequality? Player 1 in gameK wins all of (2k,3k).
Player 1 in gameG wins all of (2k,3k) in the summandπG

i (3k, s2, . . . , sn−m, tn−m+1)

and one quarter of(2k,3k) in the summandπG
i (k, s2, . . . , sn−m, tn−m+1).

Next, πK
1 (sn−m+1, tn−m+1) � (3m − n)/(2m) = 1/2 by the profitability argument in

Section 3.1. Combining the above inequalities,

n−m∑
i=1

πG
i (s1, s2, . . . , sn−m, tn−m+1)� 1/2a = (n−m)/2m.

Therefore

6 To illustrate, consider the case in which there is only one independent player (i.e.,m = a = n − 1). In
this case the independent player chooses each of them equidistant locations chosen by the firm controlling
coalition with probability 1/m. Alternatively, consider the special case ofn= 6 andm= 4 (a = 2), i.e. there are
two independent players and one player controlling a 4-firm coalition. In this case the coalition firms will o
locations 1/8, 3/8, 5/8, and 7/8 whereas the first (second) independent player chooses locations 1/8 and 3/8
(5/8 and 7/8) with probability 1/2 each.
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πG
n−m+1(s1, s2, . . . , sn−m, tn−m+1)� 1− n−m

2m
= 3m− n

2m
� πG

n−m+1(s1, s2, . . . , sn−m, sn−m+1)

with the last inequality following again from the profitability argument of Section 3.1.✷
7. Discussion

We find that collusion in location games only pays if the set of colluders is larger tha
set of non-colluding competitors. Bilateral collusion, for example, can only pay if ther
no more than three competitors. This result is based on an approach which relies on
weak rationality requirements. It assumes that players discussing some binding agre
to collude will only go ahead if they can guarantee themselves a payoff better tha
payoff expected “behind the veil of ignorance.”

This maxmin approach prescribes that colluding players should spread themselv
making players outside the colluding set indifferent between locations. This see
be rather intuitive: One would expect that two colluding supermarkets (or superm
belonging to the same chain) locate in different parts of one city to avoid cannibaliz
For a special case of competition on the unit interval, we show that the maxmin stra
also used in a non-cooperative equilibrium.

Our results may have implications for the topic of mergers in markets with (pure) s
competition as an example of which competition among big book retailers (where
competition is extremely limited) may serve. As merger in the traditional sense (see
et al. [10]) where firms simply “disappear” never pays in such location games, m
can only be profitable if the merging units are kept as separate units which are gover
central headquarters. This is identical to the case of collusion analysed above. Howe
analysis reveals that with this kind of competition only “mega mergers” are likely to oc7
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