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Spatial Voting with Endogenous Timing

by

STEFFEN HUCK, VICKI KNOBLAUCH, AND WIELAND MÜLLER∗

We consider a model of (spatial) voting with endogenous timing. In line with
actual political campaigns, candidates can decide endogenously when and where
to locate. More specifically, we analyze endogenous timing in a two-period
n-candidate spatial-votinggame. We show that this game possesses a pure-strategy
equilibrium∗ (OSBORNE [1993]) but no – or only very complex – subgame-perfect
equilibria. We demonstrate the latter point by analyzing the subgame-perfect equi-
libria in a three-candidate game. Our results show that allowing for endogenous
timing can eliminate some of the more unappealing equilibrium characteristics of
the standard model. (JEL: C 72, D 72, R 10)

1 Introduction

Among the many simplifying assumptions of the Downsian voting model, the (per-
haps) most serious is that candidates select their positions simultaneously. In fact,
assuming any specific exogenous order in which candidates select their platforms
appears in conflict with the evidence. Typically, political campaigns last for several
weeks, if not months, and candidates decide endogenously on when to take which
stance in important matters. With the exception of OSBORNE’s [1993], [2000] pio-
neering work, which analyzes endogenous timing with three candidates, the litera-
ture has remained remarkably quiet on this issue. In particular, we are not aware of
general results for more than three candidates.1

This paper attempts to move a step forward in modeling endogenous timing in
voting with an arbitrary number of candidates. Remarkably, introducing endogenous
timing eliminates some of the less attractive properties of the standard model.
The standard model predicts, for example, that with n ≥ 4 parties, both outermost
positions, the one farthest to the left and the one farthest to the right, are taken by two
candidates each. Given that we are not aware of any countries with two parties on the
far left and two parties on the far right, this appears to be a particularly unappealing

∗ We thank two anonymous referees for helpful comments. The third author
acknowledges financial support from the German Science Foundation (DFG) and the
Netherlands Organisation for Scientific Research (NWO) through aVIDI grant.

1 One notable exception is OSBORNE [1993], who also provides a result for n = 4
and n = 5 (after strengthening some of his assumptions).
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feature of the standard model. With endogenous timing we can reconcile theory
and empirics in that respect, since we find equilibria in which the positions farthest
to the left and right are not taken by two candidates. Rather, candidates are more
equally distributed over the political spectrum.

We model endogenous timing in very much the same way as it has been employed
in the industrial organization literature (see, e.g., SALONER [1987], HAMILTON AND

SLUTSKY [1990], or ROBSON [1990]). The general idea is the following. Suppose G
is a normal-form game with n players whose strategy sets are S1, S2, . . . , Sn . Let G ′

be a two-period game in which all players act simultaneously in the first period.
In the first period each player i chooses an action from Si or chooses to wait. In
period 2, all period 1 actions become common knowledge, and then all players
who chose to wait in period 1 choose their actions simultaneously. Payoffs are as-
signed using the payoff matrix of the game G. Then G ′ is a game with endogenous
timing. In this paper we investigate the equilibrium structure of a spatial-voting
election game with endogenous timing. More particularly, we start with a stan-
dard spatial-voting election game in which n candidates simultaneously choose
positions on the political spectrum [0, 1], along which voters are uniformly dis-
tributed. Each voter supports the nearest candidate. Each candidate’s payoff is the
length of the set of voters supporting her. Then we introduce endogenous timing as
above.

It is natural to first consider subgame-perfect equilibria. However, it turns out that
this is extremely complex. In the appendix we illustrate the difficulties of finding
a subgame-perfect equilibrium (SPE) by only analyzing the special case with n = 3.

We show that in this case the game has no SPE in pure strategies. However, there
is a rather complex SPE in mixed strategies. On the equilibrium path of this mixed
SPE, two candidates locate in period 1 at 1/4 and 3/4, respectively, whereas the third
candidate locates somewhere in between these two positions in period 2. Due to
the difficulties we encounter in finding a SPE in this special case, we consider an
alternative equilibrium concept – the equilibrium∗ notion introduced by OSBORNE

[1993]. Unlike a SPE, an equilibrium∗ is not required to be a Nash equilibrium on,
or even to be defined on, every subgame. In particular, an equilibrium∗ is required
to be a Nash equilibrium on any subgame that is reached by a history in the course
of which no two players deviate in the same period from the play prescribed by the
equilibrium∗ . It can be argued that an equilibrium∗ possesses the same stability that
is the defining characteristic of subgame perfection.

We show that in the general n-player case, our voting model with endogenous
timing has an equilibrium∗ in which any n − 1 candidates locate at equidistant
locations in period 1, whereas the nth candidate waits until period 2 and then locates
somewhere in between the outermost positions occupied in the first period. While
employing this procedure remedies the unintuitive features of the standard model,
it also demonstrates, on a more technical level, the advantage and usefulness of the
equilibrium∗ concept: An easy-to-prove equilibrium∗ may exist for a game that has
no SPE, and there may be a simple equilibrium∗ for a game that has only complex
or hard-to-find SPE.
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Related Literature. The model we study is related to the ones in PALFREY [1984],
OSBORNE [1993], and OSBORNE [2000]. Palfrey studies a three-candidate two-
period model with exogenous timing in which two candidates locate in the first
period and the third locates in the second period after observing the other two
candidates’ choices. Candidates are assumed to be vote maximizers. Palfrey shows
that in this setup there exists a limit equilibrium in which the first-period candidates
locate at different positions and the third candidate locates in between the two in the
second period. Palfrey’s and our model share the features of two location periods
and vote-maximizing candidates. However, whereas Palfrey only considers the case
of n = 3, we consider the n-player setup.2 Moreover, whereas timing decisions are
imposed exogenously in Palfrey’s model, we endogenize this decision. Interestingly,
restricting our result to the three-player case, Palfrey’s timing and location pattern
emerges endogenously in our model.

OSBORNE [1993] studies two versions of a three-candidate many-period model.
If candidates move in a fixed order, as is assumed in one version, then there is
a unique pure SPE outcome, in which the first candidate enters at the median voter’s
favorite position, the second candidate stays out, and the third candidate enters at
the median. In another version of the model there is an infinite sequence of periods
1, 2, ... In each period every player who has not already chosen a position either
chooses a position now or chooses to wait until the next period.3 Given a strategy
profile of the candidates, there is a date after which no new entry into the competition
occurs. At this date an election is held. The winner is the candidate receiving most
votes. Osborne shows that in every SPE of this model only one candidate enters and
the other two stay out of the competition.

OSBORNE [2000] again uses the setup in which each of three candidates may move
whenever she wishes. But this time candidates are uncertain about the distribution
of the voters’ favorite positions. Moreover, each candidate wishes to maximize
the probability of winning, has a (symmetric) minimal acceptable probability of
winning, p0, and would rather stay out of the competition than enter and win with
probability less than p0. As Osborne shows, if there is sufficient uncertainty, “the
game has an equilibrium (essentially a SPE) in which two players enter at distinct
positions simultaneously in the first period and the third player either stays out, or, if
there is enough uncertainty, enters in the second period at a position between those
of the other candidates” (p. 42).

There are two main differences between Osborne’s models and our approach.
First, we allow for only two periods in which candidates may choose platforms,
whereas Osborne allows for infinitely many. Second, and more importantly, we are
not modeling a winner-take-all election, in which a payoff of, say, 1 for one candidate
and 0 for all others would be appropriate, but a proportional-representation election,
in which, for example, our candidates can be thought of as political parties, and

2 Note that without proof Palfrey states the equilibrium configuration for the case
of an arbitrary number of players locating in the first period and one more player lo-
cating in the second period.

3 Note that by always choosing to wait, a candidate can stay out of the competition.
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each party is awarded a number of seats in parliament proportional to the number
of votes it receives.4

The paper is organized as follows. In section 2 we define spatial voting with
endogenous timing. In section 3 we discuss the equilibrium∗ concept and show that
the n-candidate spatial-voting model with endogenous timing has a pure-strategy
equilibrium∗. (As noted above, in the appendix we consider SPE in the three-player
case.) Section 4 offers a short discussion of our findings and concludes with a short
list of open problems.

2 The Model

For simplicity of exposition5 we assume voters are uniformly distributed along
[0, 1] with density 1. There are n (≥ 3) candidates, labeled 1, 2, ..., n. The voting
game consists of two periods. In period 1 all n candidates act simultaneously. For
each i, candidate i chooses a position xi ∈ [0, 1] or chooses to wait until period 2.
The choices then become common knowledge. In period 2 those candidates who
chose to wait in period 1 simultaneously choose positions. After period 2, each
occupied location x attracts all voters nearer to x than to any other occupied loca-
tion.

The set of voters attracted to x is called the voter set of location x. Then all
candidates located at x share equally the voter set of location x. Thus, the pay-
off πi to candidate i = 1, 2, ..., n is the length of the voter set of location xi di-
vided by the number of candidates located at xi . We assume that a candidate who
locates at time t = 2 at an already occupied location x may specify x+ or x−.
Without this standard assumption there is no hope for a Nash equilibrium even
for many of the one-player subgames of the location game with endogenous tim-
ing. The examples in Figure 1 show how payoffs are assigned under the assump-
tion.

Notice that the above notation is somewhat abbreviated: it can be inferred from
(4/5, 2/5, (2/5)+) that candidate 2 located in period 1 and candidate 3 waited, then
located in period 2, but the notation does not reveal whether candidate 1 located
in period 1 or period 2. However, the notation is complete enough to determine
payoffs. The assumption that a candidate locating in period 2 at an occupied loca-
tion x may choose x+ or x− says that a candidate can adopt an opponent’s political
position, yet somehow signal that she is slightly to the left or to the right of that op-
ponent. The assumption provides a nice compromise between the continuous voter
distribution of our model and the fact that real elections have only finitely many
voters.

4 In an Hotelling-oligopoly model our assumption of vote-maximizing candidates
naturally and realistically translates into demand-maximizing (and thus payoff-
maximizing) firms when prices are fixed.

5 It is easy to see that Propositions 2 and 4 (Appendix) can be proved in very much
the same way for the case of any continuous, atomless distribution of voters.
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Figure 1
Examples for Assignment of Payoffs

3 Analysis

The most natural way to analyze this game is to look for a SPE. However, it seems
elusive to find a SPE for the general case of n players. This is illustrated in the
appendix, where we consider the special case of n = 3. As it turns out, in this
special case there is no pure SPE, and finding a SPE in mixed strategies is already
extremely cumbersome. Therefore we consider the notion of an equilibrium∗ as
defined in OSBORNE [1993]. Using this concept, we will prove much more easily
that there are equilibria∗ in pure strategies in the general n-player case.

3.1 Equilibrium∗

To circumvent the difficulties of fully specifying strategies for each of the players
and of showing that these strategies constitute a (mixed) Nash equilibrium in each
subgame, we proceed as in OSBORNE [1993], [2000] by applying the notion of
an equilibrium∗ . This notion requires only a partial specification of the players’
strategies. The general idea of an equilibrium∗ is “that no player should be able to
increase her payoff by changing her action in any period, given that the behavior
of the players in the subgame to which the deviation leads is optimal” (OSBORNE

[1993, p. 142]). As Osborne argues, “[t]o check that a strategy profile σ meets this
condition, no information is needed about the behavior that σ prescribes in subgames
that are reached when more than one player deviates from σ in some period.”

More precisely, an equilibrium∗ is defined as follows: A substrategy σi of player i
for a game G is a subset H(σi) of the set of histories of G together with a function
that assigns an action of player i to every history in H(σi). More accurately, the
function must assign an action of player i to h ∈ H(σi) unless player i is not required
to act in the period following h (in other words, unless player i has no information
set in the game tree in the period following h). A profile σ of substrategies is an
equilibrium∗ if (1) for every player i, H(σi) includes all histories that result when at
most one player deviates from σ in any given period and (2) after any such history,
no player can increase her payoff by a unilateral change of strategy, given that the
other players continue to adhere to σ.
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Clearly, including condition (1) in the definition of an equilibrium∗ makes sure
that the substrategies contain enough information to determine whether condition (2)
is satisfied. Note that it is much easier to work with this notion of equilibrium than
with SPE, since one does not have to worry about the existence of an equilibrium in
subgames that can only be reached by a deviation of two or more players in a given
period.

We now use two examples to illustrate the definition of equilibrium∗ . In Figure 2
subgame K begins at node c. Suppose K is a simultaneous-move game with no
mixed-strategy Nash equilibrium. (For example, suppose players 1 and 2 simul-
taneously choose a positive integer, and the player who chooses the larger integer
wins 10 while the other player wins 4. In case of a tie each wins 7.) Then G, the en-
tire game, possesses no mixed-strategy SPE and consequently no pure-strategy SPE;
however, s∗ defined by the bold lines in Figure 2 is a pure-strategy equilibrium∗ .
Notice that s∗ satisfies condition (1) of the definition of equilibrium∗, since the
history of G leading to K requires that two players deviate from s∗ in the first period
of the game.

Figure 2
An Example

On the other hand, consider the game of Figure 2 altered slightly by making the
information set labeled b into two information sets. Then s∗ is not an equilibrium∗ ,
since K is the result of a history in which player 1 deviates in period 1 and player 2
then deviates in period 2 (note that by turning b into two information sets, we no
longer have both players playing in period 1, but we now have player 1 playing
in period 1 and player 2 playing in period 2). In fact the new game possesses no
equilibrium∗ .

Concerning the relation between an equilibrium∗ and a SPE, note that a SPE is
an equilibrium∗, and that if every proper subgame has a SPE then any equilibrium∗

can be used as a starting point in the construction of a SPE. As was stated above, the
strengths of the equilibrium∗ concept are first that an equilibrium∗ strategy profile
possesses the same stability that is the defining characteristic of a SPE, and second
that a simple equilibrium∗ may exist for a game with no SPEs or for a game that
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possesses only a complicated or hard-to-find SPE. We think this will become clear
when comparing the results in the appendix with the ones that will be derived in the
following subsection.

3.1.1 A Pure Equilibrium∗ for the n-Player Game

Consider the following substrategy profile s∗:6

(i) Candidates 1,2, ...,n − 1 locate at k,3k,5k, ...,1− k with k = 1/[2(n − 1)], respec-
tively, in the first period. After a history in which only candidate i ∈ {1, 2, . . . , n − 1}
deviates by choosing to wait until period 2, candidate i locates at the point he devi-
ated from, (2i − 1)k.

(ii) Candidate n chooses to wait in the first period and
(1) locates at 3k after a history in which the other candidates chose to locate as
described in the first sentence of (i);
(2) locates at x+ after a history in which the set of occupied positions is {x, 3k, 5k,

..., 1 − k} with x < k;
(3) locates at x− after a history in which the set of occupied positions is {x, 3k, 5k,

..., 1 − k} with k < x ≤ 3k;
(4) locates at 3k− after a history in which the set of occupied positions is {x, 3k, 5k,

..., 1 − k} with x > 3k;
(5) similarly for a deviation in which locations {k, 3k, 5k, ..., 1 − 3k} were chosen

in the first period but location 1 − k was not;
(6) locates at (2i − 1)k after a history in which the set of occupied positions is {x,

k, ..., (2i − 3)k, (2i + 1)k, ..., 1 − k} with x �= (2i − 1)k, i ∈ {2, 3, ..., n − 2};
(7) locates at (2i − 1)k after a history in which only candidate i ∈ {1, 2, . . . , n − 1}

deviated by choosing to wait.

Proposition 1 will show that s∗ is an equilibrium∗ of the voting game. The importance
of this result is that it describes behavior that is much more in line with what we
can observe in the field than the equilibria of the standard model. The occupied
position farthest to the left, k, and the occupied position farthest to the right, 1 − k,
are only occupied by one candidate each. The standard model predicts that these
positions are occupied by two parties each. The difference is particularly striking
for n = 4, a case not uncommon in elections worldwide.7 The standard model with
simultaneous moves predicts two left-wing parties at 1/4 and two right-wing parties
at 3/4 while the center of the political spectrum is unoccupied. In contrast, s∗ predicts
one left-wing candidate who locates himself early at 1/6, one right-wing candidate
who chooses at 5/6, a centrist candidate at 1/2, and a fourth candidate who waits

6 Of course, there is no loss of generality in letting candidates 1,2, ...,n − 1 be the
ones who commit in period 1 according to s∗ and letting candidate n be the one who
waits until period 2.

7 For example, there are exactly four parties in the parliaments of Australia, Aus-
tria, Canada, and Hungary.
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initially. In the case of s∗ the fourth candidate also chooses a centrist position;
but, as the proof of the next proposition will reveal, it is easy to construct other
equilibria where he chooses either a right-wing or a left-wing platform. Thus, s∗

predicts a wider variety of political platforms than one would expect in the standard
model. And, perhaps most importantly, s∗ predicts that there are centrist parties also
with n = 4.

PROPOSITION 1 The substrategy profile s∗ is an equilibrium∗ of the voting game
with endogenous timing.

PROOF We will show that s∗ is a Nash equilibrium and that s∗ restricted to any
subgame reached by a unilateral deviation is a Nash equilibrium of that subgame.
We need consider only subgames reached by a single unilateral deviation, since
there are only two periods in the game, so that a second unilateral deviation leads
to a terminal node. Suppose G ′ is a subgame reached by a unilateral deviation.
The deviation was not by candidate n, since a unilateral deviation by n leads to
a terminal node, not a subgame. If G ′ is a result of i ∈ {1, 2, . . . , n − 1} waiting,
then G ′ is a two-player subgame, both i and n locate at (2i − 1)k, and each earns
payoff k. Neither can do better by deviating unilaterally in G ′, that is, by relocating
to x �= (2i − 1)k, since relocating to x ∈ [k, 1 − k] earns k, relocating to x < k earns
(x + k)/2 < k, and relocating to x > 1 − k earns [(1 − x) + k]/2 < k. If G ′ is a result
of candidate i ∈ {1, 2, . . . , n − 1} choosing in period 1 a location x �= (2i − 1)k,
then G ′ is a one-player subgame, and that player is candidate n. We must show
that s∗ prescribes optimal behavior for n in G ′. If i ∈ {2, 3, . . . , n − 2} then n locates
at (2i − 1)k. Candidate n has located in an unoccupied interval that is both as long as
any other unoccupied interval and at least twice as long as either of the two outermost
unoccupied intervals. Therefore n has maximized her payoff. If i = 1 and i locates
at x < k, then n locates at x+ in an unoccupied interval of length greater than 2k, and
the same argument holds. If i = 1 and i locates at x with k < x < 3k, then n locates
at x−. If i = 1 and i locates at x ≥ 3k, then n locates at 3k−. In each case n has
located in an outermost unoccupied interval of length greater than k. Candidate n
has located so as to capture an outermost unoccupied interval that is at least half
as long as any other unoccupied interval and at least as long as the other outermost
unoccupied interval. Therefore n has maximized her payoff. The case i = n − 1 is
exactly symmetric.

It remains to show that s∗ is a Nash equilibrium. Candidate n cannot increase his
payoff by deviating unilaterally, since πn(x, s∗

−n) = k if k ≤ x ≤ 1 − k; πn(x, s∗
−n) =

(x + k)/2 if x < k; πn(x, s∗
−n) = (1 − x + k)/2 < k if x > 1 − k; and πn(s∗) = k. Simi-

larly, if i ∈ {1,2, . . . ,n − 1} deviates unilaterally by waiting and locating at x ∈ [0,1]
in period 2, or i ∈ {2, 3, . . . , n − 2} deviates unilaterally by locating at x �= (2i − 1)k
in period 1, then n locates at (2i − 1)k, so that πi(x, s∗

−i) ≤ k for all x while π2(s∗) = k
and πi(s∗) = 2k for i �= 2. Finally, if 1 deviates by locating at x �= k in period 1, then
π1(x, s∗

−1) = x < k if x < k; π1(x, s∗
−1) = (3k − x)/2 < k if k < x < 3k; π1(x, s∗

−1) =
k/2 if x = 3k; π1(x, s∗

−1) = k if 3k < x ≤ 1 − k ; π1(x, s∗
−1) = (1 − x + k)/2 < k if
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x > 1 − k; and π1(s∗) = 2k. Symmetrically, if n − 1 deviates unilaterally by locating
at x �= 1 − k in period 1, then πn−1(x, s∗

−(n−1)) ≤ k for all x, while πn−1(s∗) = 2k.

3.1.2 Comparing Other Equilibria*

As indicated above, there are other equilibria∗ where one candidates waits and
positions himself at a different location in period 2. Moreover, it is easy to see that
there are also equilibria∗ where all candidates move in the first period – choosing
the equilibrium locations of the standard simultaneous-move game. The reader may
thus ask what we have really gained by introducing endogenous timing. We would
like to offer several points: The model as such is more plausible. Its equilibrium
structure is richer, and there exist some equilibria∗ that appear much more in line
with evidence than the equilibria of the standard model. Moreover, comparing the
different equilibria∗ , we find that the ones where one candidate waits in the first
period not only yield a more realistic distribution of platforms but are also more
stable. In particular, in an equilibrium∗ where all candidates move simultaneously,
all candidates have alternative best responses (like choosing a location somewhere
between other candidates or waiting and then choosing a location). In contrast, in
the equilibrium∗ identified above, only players 1 and n have alternative best replies,
while all candidates would be strictly worse off by changing their action. For n = 3
there is a pure equilibrium∗ where one candidate waits, but no pure equilibrium∗

where all candidates move simultaneously, which lets the equilibrium∗ identified
above appear more parsimonious. Finally, let us reinterpret our model as one of firm
behavior in an oligopoly market with product differentiation. When n > 3, we see
that the equilibrium∗ in which one firm waits to locate is more efficient than the
equilibria in the one-period model, as firms are spread out more evenly.

4 Conclusion

We have investigated a two-period spatial-voting game with endogenous timing.
Our main result is that in the general n-player case, this game has an equilibrium∗ in
which any n − 1 candidates evenly spread out in period 1 whereas the nth candidate
waits until period 2 and then chooses a platform.

On a purely game-theoretic level we have demonstrated the usefulness of the
equilibrium∗ concept for sequential games as put forward by OSBORNE [1993].
Unlike a subgame-perfect equilibrium, an equilibrium∗ only requires a strategy
vector to be a Nash equilibrium on any subgame that is reached by a history in the
course of which no two players deviate in the same period from the play prescribed
by the equilibrium∗ . This makes it much easier to work with. In fact, according to our
analysis in the appendix, there is little hope of finding a (mixed) subgame-perfect
equilibrium in the general n-player case of our spatial-voting model, whereas we
showed with comparative ease that the general model does possess an equilibrium∗

in pure strategies.



Steffen Huck, Vicki Knoblauch, and Wieland Müller566 JITE 162

On a substantive level, we consider our analysis another step toward more realistic
voting models that allow for political campaigning during which candidates decide
when and where to locate on the political spectrum. As we have shown here,
making the assumptions more realistic can also make the equilibrium predictions
more appealing. In particular, we have seen that with endogenous timing there are
equilibria with more political variety and fewer extremist parties than the standard
model predicts. Obvious avenues for future work are to allow for more periods
or the analysis of continuous-time models. Also, it might be interesting to relax
the assumption of perfect commitment by allowing candidates to relocate (at some
cost) or analyzing reputation formation in repeated voting games. Finally, it would
be worthwhile to see how the outcome of the model changes when voters are not
uniformly distributed on the line [0, 1].

Appendix

A.1 Subgame-Perfect Equilibrium

In this appendix we demonstrate that it is elusive to find a SPE for the general
n-player voting game with endogenous timing as introduced in section 2. Note
that a strategy in an extensive-form game is a complete plan of behavior in the
sense that it assigns an action to a player at each of his information sets. Thus, in
the above voting game a strategy of a candidate is a tuple (x1

i , fi(x1
−i)) where x1

i

either specifies a position for period 1 or indicates that the candidate waits, i.e.,
x1

i ∈ [0, 1] ∪ {w} with w indicating the decision to wait. The function fi(x1
−i) is

a mapping × j �=i([0, 1] ∪ {w}) → [0, 1] specifying the candidate’s position choice
in period 2 in response to what the other candidates did in period 1 in case she
has decided to wait. So, a strategy in the voting game is a rather complicated
mathematical object. But to fully specify a player’s strategy is necessary if one
wants to apply the notion of a SPE in order to solve the game.

A.1.1 A Mixed-Strategy Subgame-Perfect Equilibrium for the Three-Player Game

In this subsection we will consider the case n = 3. We will begin by studying
a game called Two Entrants and an Incumbent. Two Entrants and an Incumbent is
a two-person game. Voters are uniformly distributed on [0, 1] with density 1, and an
incumbent is located at a ∈ [0, 1]. Then two entering candidates (the two players)
locate simultaneously on [0, a−] ∪ [a+, 1].
PROPOSITION 2 Two Entrants and an Incumbent has a pure-strategy Nash equi-
librium if and only if a ∈ [0, 1/4] ∪ [3/4, 1] ∪ {1/2}.
PROOF Suppose a ∈ [3/4, 1]. Let both entrants locate at a/3. Suppose candidate 1
relocates to x. If 0 ≤ x < a/3, then π1(x, a/3) < a/3 = π1(a/3, a/3). If a/3 < x ≤ a−, then
π1(x, a/3) = a/3 = π1(a/3, a/3). If a+ ≤ x ≤ 1, then π1(x, a/3) ≤ 1 − a ≤ 1 − 3/4 = 1/4 ≤
a/3 = π1(a/3, a/3). If x = a, then π1(x, a/3) = 1/2 − a/3 ≤ 1/4 ≤ π1(a/3, a/3). Therefore,
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(a/3, a/3) is a Nash equilibrium if a ∈ [3/4, 1]. Similarly, if a ∈ [0, 1/4], the strategy
combination (1 − (1 − a)/3, 1 − (1 − a)/3) is a Nash equilibrium, and if a = 1/2,
then (a−, a+) is a Nash equilibrium. Next, suppose a ∈ (1/2, 3/4) and candidates 1
and 2 locate at x1 and x2 respectively.

Case 1. x1 ∈ [a+, 1] ∪ {a} and x2 �= a−. Then π2(x1, a−) = a > π2(x1, x2).

Case 2. x1 ∈ [a+, 1] ∪ {a} and x2 = a−. Then π1(1 − a, x2) = (a + 1 − a)/2 = 1/2 >

1 − a ≥ π1(x1, x2).

Case 3. x2 ∈ [a+, 1] ∪ {a}. Proceed as in cases 1 and 2.

Case 4. x1, x2 ∈ [0, a−] and x1 �= x2. Without loss of generality, x1 < x2. Then π1

((x1 + x2)/2, x2) > π1(x1, x2).

Case 5. 0 ≤ x1 = x2 ≤ a/3. Then π1(a+, x2) = 1 − a > 1/4 > a/3 ≥ π1(x1, x2).

Case 6. a/3 < x1 = x2 ≤ a−. Then 0 < (x1 + a)/4 < x1 = x2, so that π1((x1 + a)/4,

x2) > (x1 + a)/4 = π1(x1, x2).

Therefore, there is no pure-strategy Nash equilibrium if a ∈ (1/2, 3/4) or, symmetri-
cally, if a ∈ (1/4, 1/2).

PROPOSITION 3 Two Entrants and an Incumbent has a symmetric, continuous
mixed-strategy Nash equilibrium when a ∈ (1/4, 3/4).

PROOF Fix a ∈ (1/4, 3/4). Let

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ x ≤ b
1 + c(a − 3x)−1/3 for b ≤ x ≤ a−,

k(2 + a − 3x)−1/3 for a+ ≤ x ≤ B,

1 for B ≤ x ≤ 1,

(A1)

where 0 < c < (2a)1/3, b = (a + c3)/3, 0 < k < (2 − 2a)1/3, and B = (2 + a − k3)/3.
Note that F, b, and B depend on c and k. We begin showing that for the proper
choice of c and k, (F, F) is a mixed-strategy Nash equilibrium by establishing some
facts about F. Using the definitions of c, b, k, and B,

a/3 < b < a < B < 1 − (1 − a)/3.(A2)

By (A2), F is well defined. By (A1), F is increasing on [b, a−] ∪ [a+, B] and
continuous on [0, a−] ∪ [a+, 1]. To ensure that F(a−) = F(a+), set 1 + c(−2a)−1/3 =
k(2 − 2a)−1/3. Solving,

k = (2 − 2a)1/3 + c(1 − 1/a)1/3.(A3)

As c varies between its bounds 0 and (2a)1/3, k varies between its bounds (2 − 2a)1/3

and 0. Next, for c fixed, π1(y, F) is a constant function of y on (b, a−), since
dπ1(y, F)

dy
= 0 for y ∈ (b, a−),
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as will now be shown:

dπ1(y, F)

dy
= d

(∫ y

b
((a − x)/2)F ′(x)dx

+
∫ a−

y
((x + y)/2)F ′(x)dx + (1 − F(a−))(a + y)/2

)/
dy

= ((a − y/2)F ′(y) − (y/2)F ′(y)

+ d((y/2)(F(a−) − F(y)))/dy + (1 − F(a−))/2

= F ′(y)(a/2 − 3y/2) − F(y)/2 + 1/2.

By (A1), F(y) = 1 + c(a − 3y)−1/3 for y ∈ (b, a−) so that

dπ1(y, F)

dy
= c(a − 3y)−4/3(a/2 − 3y/2) − (1 + c(a − 3y)−1/3)/2 + 1/2 = 0.

This completes the proof that for c fixed, π1(y, F) is a constant function of y on
(b, a−). In fact, the definition (A1) was derived by solving the differential equation
dπ1(y, F)/dy = 0. Since F is continuous on [0, a−], π1(y, F) is a continuous function
of y for y ∈ [b, a−], so that π1(y, F) is a constant function of y for y ∈ [b, a−].
Also, it is clear that for y ∈ [0, b), π1(y, F) < π1(b, F), since with probability 1
candidate 2 locates in [b, a−] ∪ [a+, B], so that candidate 1 increases his voter set
by moving from y to b. In summary, if candidate 1 is limited to playing y ∈ [0, a−],
candidate 1 maximizes his payoff against F by choosing any y ∈ [b, a−]. To show
that candidate 1 limited to playing y ∈ [a+, 1] maximizes his payoff against F by
choosing any y ∈ [a+, B], it is necessary to show dπ1(y, F)/dy = 0 for y ∈ (a+, B):

dπ1(y, F)

dy
= d

(
F(a−)(1 − (a + y)/2)

+
∫ y

a+
(1 − (x + y)/2)F ′(x)dx +

∫ B

y
((x − a)/2)F ′(x)dx

)/
dy

= −F(a−)/2 + (1 − y/2)F ′(y)

− d((y/2)(F(y) − F(a+)))/dy − ((y − a)/2)F ′(y)

= F ′(y)(2 + a − 3y)/2 − F(y)/2.

By (A1), F(y) = k(2 + a − 3y)−1/3 for y ∈ (a+, B) so that

dπ1(y, F)

dy
= k(2 + a − 3y)−4/3(2 + a − 3y)/2 − k(2 + a − 3y)−1/3/2 = 0.

For y ∈ (B, 1] we have π1(y, F) < π1(B, F), since with probability 1 candidate 1
increases his market share by moving from y to B. If candidate 1 is limited to
y ∈ [a+, 1], then candidate 1 maximizes his payoff by choosing any y ∈ [a+, B].
To show that (F, F) is a Nash equilibrium for some choice of c, it is sufficient to



Spatial Voting(2006) 569

show that for the proper choice of c, candidate 1 maximizes his payoff against F
by locating in [b, a−] ∪ [a+, B]. By our work above it is enough to show that for the
proper choice of c we have π1(a−, F) = π1(a+, F).

It is now convenient to introduce c into our notation and write Fc(x) in place of
F(x). Fix x0 ∈ (a/3, a−]. As c → 0, b → a/3. Therefore limc→0 Fc(x0) = limc→0[1 +
c(a − 3x0)

−1/3] = 1. In other words, for small c player 2 playing Fc almost certainly
locates near a/3. Then for small c

π1(a
−, Fc) ≈ a/3 < 1 − a ≈ π1(a

+, Fc).(A4)

Next fix x0 ∈ [a+, 1 − (1 − a)/3). As c → (2a)1/3, we have k → 0 and B → (2 +
a)/3 = 1 − (1 − a)/3. Therefore limc→(2a)1/3 Fc(x0) = limc→(2a)1/3 k(2 + a − 3x0) = 0.
For c near (2a)1/3, player 2 playing Fc almost certainly locates near 1 − (1 − a)/3.
For c near (2a)1/3

π1(a
−, Fc) ≈ a > (1 − a)/3 ≈ π1(a

+, Fc).(A5)

Since π1(a−, F) − π1(a+, Fc) is a continuous function of c, by (A4) and (A5) and the
intermediate-value theorem there must be a c ∈ (0, (2a)1/3) such that π1(a−, Fc) =
π1(a+, Fc). For this c, (Fc, Fc) is a Nash equilibrium. Q.E.D.

We can now establish the claim made at the beginning of this section.

PROPOSITION 4 The three-player location game with endogenous timing played on
[0, 1] with consumers distributed uniformly has a mixed-strategy subgame-perfect
equilibrium, but no pure-strategy subgame-perfect equilibrium.

PROOF By Proposition 2, if two players wait in period 1 and the third player locates
at a ∈ (1/4, 1/2) ∪ (1/2, 3/4) in period 1, the resulting subgame has no pure-strategy
Nash equilibrium. Therefore the three-player location game with endogenous timing
has no pure-strategy SPE. Since the three-player location game with endogenous
timing possesses an equilibrium∗ (s∗ of Proposition 1), to show that it possesses
a mixed-strategy SPE it is enough to show that every proper subgame possesses
a SPE. SHAKED [1982] showed that the subgame that results when all three players
wait in period 1 has a mixed-strategy Nash equilibrium. Each subgame that results
when exactly two players wait in period 1 has a pure- or mixed-strategy Nash
equilibrium by Propositions 2 and 3. It is quite easy to see that every subgame
that results when exactly one player waits in period 1 has a pure-strategy Nash
equilibrium: If players 1 and 2 locate at x1 and x2 respectively in period 1, then x−

1 ,
x+

1 , x−
2 , or x+

2 is a Nash equilibrium of the one-player period-2 game. Since all the
subgames in this paragraph are simultaneous-play games, all these Nash equilibria
are trivially subgame-perfect. Q.E.D.

REMARK 1 Note that on the equilibrium path of the mixed-strategy subgame-
perfect equilibrium in Proposition 4, two candidates locate at 1/4 and 3/4, respectively,
in period 1, whereas the third candidate locates at 1/4

+ in period 2.
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