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Abstract
This paper reports the results of experiments designed to test the theory of the optimal com-
position of prizes in contests. In the aggregate the behavior of subjects is consistent with that
predicted by the theory, but we find that such aggregate results mask an unexpected composi-
tional effect on the individual level. Whereas theory predicts that subject efforts are continuous
and increasing functions of ability, the actual efforts of our laboratory subjects bifurcate. Low-
ability workers drop out and exert little or no effort, and high-ability workers try too hard. This
bifurcation, which is masked by aggregation, can be explained by assuming loss aversion on
the part of the subjects. (JEL: C92, D44, D72, D82, J31)

1. Introduction

Casual empiricism indicates that many organizations are characterized by a bifur-
cation of effort among workers. Whereas one subset appears unable to stop itself
from working (workaholics), the other subset exerts no effort at all (dropouts).
This bifurcation raises several questions: Why does it exist? What lessons can we
learn from its existence for the proper design of economic mechanisms in general
and for incentive systems in particular?

In this paper we experimentally test a model proposed by Moldovanu and Sela
(2001; henceforth M-S), who derive the “optimal” set of prizes for an organization
involved in motivating workers through an effort tournament. They investigate
firms where workers are assumed to be risk-neutral expected utility maximizers
and to have either linear, convex, or concave cost-of-effort functions and where
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an organizational designer has a limited amount of money available to award
as bonuses for workers whose outputs are highest. (Assume that output is non-
stochastic and linear in effort; so in essence, effort is equivalent to output and both
are observable.) The authors demonstrate that, for organizations whose workers
have linear or concave cost-of-effort functions, the optimal prize structure is one
where the entire prize budget is allocated to one big prize, whereas if costs are
convex, it might be optimal to distribute the budget among several prizes.1 In
this model, the equilibrium effort functions are continuous functions of the abil-
ities of the workers. In the lab, however, individual effort functions appear to be
discontinuous step functions, with low-ability workers dropping out by exerting
little or no effort and high-ability workers overexerting themselves; this leads to
the bifurcation of efforts described previously.

One interesting aspect of our experimental results is that, despite this bifur-
cation of effort, on average the prize structures proposed by M-S do elicit
approximately the correct effort levels, and so, with respect to the mean, one
could say that they work. Even more interesting is that, when we aggregate our
data across laboratory work groups, efforts appear to be continuous; hence the
observed bifurcation of efforts is hard to detect on the aggregate level. We sug-
gest that the behavior of our subjects is consistent with loss aversion in this sense:
We demonstrate that subjects with appropriately parameterized loss-averse utility
functions exhibit behavior that nearly replicates the behavior we observe.

One might claim that our bifurcation result is of little consequence to a risk-
neutral owner because, on average, the firm still gets the output it desires. There are
several problems with this logic, however. First, given that subjects are behaving
as if they were loss averse, there may well exist a different incentive structure for
the firm that could yield even better performance. Remember, the M-S mechanism
is optimal only under the assumption of risk neutrality. Second, if workers drop
out then the best response of those who are working may be to lower their effort;
in this case the long-run output falls.

Dropout behavior has been observed previously in a number of experimental
and field studies. In Schotter and Weigelt (1992), subjects who are disadvan-
taged in the competition (i.e., have higher marginal cost-of-effort functions) are
observed to drop out of tournaments even when, in equilibrium, they are not
expected to lose money. These subjects are dissuaded by the low probability of
winning. In that paper, reviving their efforts takes the laboratory policy inter-
vention of an affirmative action law. A similar finding is in Corns and Schotter
(1999), where a price preference must be given to high-cost bidders in an asym-
metric auction to induce them to compete for contracts. It is interesting that, by

1. Harbring and Irlenbusch (2003) report the effect of varying the prize structure in experimental
rank-order tournaments à la Lazear and Rosen (1981). They show, among other things, that average
effort increases with a higher share of winner prizes.
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giving a price preference to the high-cost bidders, the auctioneer elicits a higher
effort from the low-cost bidders since they now face more competition and so
their best response is to bid more aggressively.2

Dropping out is not part of the game’s equilibrium in the M-S model, but in
other models it may be. For example, in Benoit (1999), members of socioeco-
nomically disadvantaged groups and members of other groups must decide—after
learning about their ability—whether or not to invest, say, in prep courses for the
SAT test. Benoit finds that if there is no affirmative action, then members of the
disadvantaged group might drop out by not investing (for a different setup see
Amegashie 2004 and Amegashie, Cadsby, and Song 2007). Prendergast (1999)
suggests that such dropout behavior can be seen in sports contests.3 Using a field
experiment (running races among elementary school students), Fershtman and
Gneezy (in press) demonstrate that some students simply stop running and drop
out when it is clear they have no chance of winning. In legal disputes (which can
be interpreted as contests), if there are asymmetric budget constraints among the
parties involved, then the party with the higher budget can hire a better lawyer and
thereby increase its chances of winning. Realizing this, the other party might give
up (drop out) immediately. Finally, dropping out has been observed in studies of
multiple unit all-pay auctions (see Barut, Kovenock, and Noussair 2002).

In this paper we proceed as follows. In Section 2 we present the M-S model
and its results and in Section 3 we describe our experimental design. Our results
are presented in Section 4, where we demonstrate that bifurcation may result if
subjects have utility functions that exhibit loss aversion. Finally, in Section 5 we
offer some conclusions and discussion.

2. Theory

2.1. Model Specification

In this section we lay out the model underlying our experiments and its predictions.
In doing so we confine ourselves to the special cases relevant for our experiments.
For more general results see M-S.

Assume there exists an organization with k ≥ 3 contestants competing in a
contest in which two prizes can be awarded. The (commonly known) values of the

2. For an overview of such price preference and affirmative action programs in the United States
and their assessment, see Holzer and Neumark (2000) as well as National Institute of Government
Purchasing (1994).
3. One interesting example of a poorly designed incentive structure in sports is discussed by Tenorio
(2000). He argues that the compensation scheme used in professional boxing—whereby a boxer’s
payment or purse for a given fight is entirely guaranteed—provides suboptimal incentives that may
(and sometimes do) result in improper preparation for the fight and hence an increased likelihood of
a poor showing.
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prizes are V1 ≥ V2 ≥ 0 with V1 + V2 = 1. In the contest, players simultaneously
exert effort xi and so incur cost ciγ (xi). The function γ : R+→ R+ is strictly
increasing with γ (0) = 0, and ci > 0 is an ability parameter. Notice that the
lower ci , the more able is player i (i.e., the lower are i’s costs) and vice versa.

It is assumed that the ability of player i is private information to i. Abilities
are independently drawn from the interval [m, 1], where m > 0, according to
the (commonly known) distribution function F with F ′ > 0. The contestant with
the highest effort wins the prize V1, the contestant with the second-highest effort
wins prize V2, and all other contestants win nothing. Accordingly, the payoff of
contestant i who has ability ci and exerts effort xi is either Vj − ciγ (xi) if i wins
prize j or −ciγ (xi) if i does not win a prize. Note, then, that this contest defines
an all-pay auction where bidders make “effort” bids and pay the cost associated
with those bids whether or not they win. The contest designer determines the
number of prizes and how to allocate the prize sum among the prizes in order
to maximize the expected value of the sum of the efforts

∑k
i=1 xi , given the

contestants’ equilibrium effort functions.
All players are assumed to be risk neutral. Furthermore, assuming that all

contestants other than i make an effort according to the function b and assuming
that this function is strictly monotonic and differentiable, player i’s problem is to
maximize

V1(1 − F(b−1(x)))k−1 + V2(k − 1)F (b−1(x))(1 − F(b−1(x)))k−2 − cγ (x).

(1)

Here the factor after V1 is the probability that x is the highest among all efforts
and the factor after V2 is the probability that x is the second-highest among all
efforts.

In the experiments we chose k = 4, m = 0.5, and a uniform distribution of
abilities (i.e., F(c) = 2c − 1 with c ∈ [0.5, 1]).

2.2. Predictions and Prescriptions

See M-S for a full derivation of the results in this section.

2.2.1. Linear cost functions. If all contestants have linear costs (i.e., if γ (x) =
x), then one can show the optimal and symmetric effort function to be

b(c) = V1A(c) + V2B(c), (2)

where

A(c) = −36+48c−12c2 −24 ln c and B(c) = 84−120c+36c2 +48 ln c.

(3)
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Turning to the designer’s problem, let V2 = α and V1 = 1 − α, where
0 ≤ α ≤ 1/2 such that the second prize is smaller than the first. A contestant’s
equilibrium effort is then given by

b(c) = (1 − α)A(c) + αB(c) = A(c) + α(B(c) − A(c)).

Because each contestant’s average effort is
∫ 1

0.5(A(c)+α(B(c)−A(c)))F ′(c) dc,
the designer’s problem reads

max
0≤α≤1/2

4
∫ 1

0.5

(
A(c) + α

(
B(c) − A(c)

))
F ′(c)dc

or, equivalently,

max
0≤α≤1/2

α

∫ 1

0.5
(B(c) − A(c))F ′(c) dc. (4)

Note that the expression in equation (4) is the average difference between
the marginal effects of the second and the first prize. It turns out that the definite
integral in equation (4) is negative. Hence, the solution to the designer’s problem
is α = 0: It is optimal to award only one prize; that is, V1 = 1 and V2 = 0.

2.2.2. Quadratic cost functions. If all contestants have quadratic costs (i.e., if
γ (x) = x2), then one can show that the optimal and symmetric effort function is

b(c) = γ −1(V1A(c) + V2B(c)) = √
V1A(c) + V2B(c), (5)

where A(c) and B(c) are defined as in equation (3).
The designer’s problem in this case reads

max
0≤α≤1/2

4
∫ 1

0.5
γ −1 (A(c) + α(B(c) − A(c)))F ′(c) dc,

and it turns out that in this case it is optimal to award two equal prizes: V1 =
V2 = 0.5. As noted by M-S (p. 549), “with convex cost functions, the beneficial
effect of the second prize on middle- and low-ability players is amplified [vis-à-
vis the linear-cost case], while the advantage of having one prize (which strongly
motivates high-ability contestants) is decreased.” This is why, on an intuitive level,
it might be optimal to award two prizes when costs are convex. In the special case
of quadratic costs, it simply turns out that awarding two equal prizes is optimal
(see also M-S, p. 545f).

Hence, the prescriptions of the model are clear. When costs are linear, the
optimal prize structure is one where the organization’s entire prize budget goes to
a single grand prize. When costs are quadratic, two equally valuable prizes define
the optimal prize structure.
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Table 1. Treatments.

No. of No. of Period Max. No. of
Treatment Description matching groups subjects endowm. effort periods

LC-1 linear costs 6 6 × 4 = 24 0.22 1.96 50
V1 = 1, V2 = 0

LC-2 linear costs 6 6 × 4 = 24 0.20 0.82 50
V1 = V2 = 0.5

QC-1 quadratic costs 5 5 × 4 = 20 0.22 1.53 50
V1 = 1, V2 = 0

QC-2 quadratic costs 5 5 × 4 = 20 0.20 0.99 50
V1 = V2 = 0.5

Control linear costs 6 6 × 8 = 48 0.22 None 50
(variant of LC-1) V1 = 1, V2 = 0

3. Experimental Design and Procedures

In the experiments we rely on a classic 2×2 design. We implement contests with
either linear or quadratic costs and combine them with two different compositions
of prizes, one that is theoretically optimal for that cost structure and one that is
not. To be more precise: In treatment LC-1, all subjects have linear costs and
there is only one positive-valued prize (V1 = 1 and V2 = 0). As we have seen,
this prize composition is optimal from the designer’s perspective if contestants
have linear costs. In treatment QC-2, all subjects have quadratic costs and there
are two equal prizes (V1 = 0.5 and V2 = 0.5). This prize composition is optimal
from the designer’s perspective if contestants have quadratic costs. In treatment
LC-2, all contestants have linear costs yet the composition of prizes is the one
that is optimal for the quadratic case. Finally, in treatment QC-1, all contestants
have quadratic costs yet the composition of prizes is the one that is optimal for
the linear case. A summary of our four treatments is given in Table 1.

The computerized experiments were conducted in the experimental labora-
tory of the Economics Department at New York University and the Center for
Experimental Social Science.4 In each session, fixed groups of four subjects were
repeatedly matched to participate in a contest. Each of the experiments con-
sisted of 50 periods. Payoffs were denominated in points. At the beginning of
each period, each subject was assigned a random number indicating their type
or ability, ci . Each random number was an i.i.d. draw from the set of numbers
{0.50, 0.51, . . . , 1.00}. After subjects were informed about their individual ran-
dom numbers, they simultaneously submitted “decision numbers.” The set of
admissible decision numbers was {0.01, 0.02, . . . , Maxeffort} where Maxeffort
was a number 20% higher than the optimal effort of a contestant with ability

4. We used the software tool kit z-Tree, developed by Fischbacher (2007).
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c = 0.5 (the “best” ability possible) in a given treatment. In treatment LC-1, LC-
2, QC-1, and QC-2, this number was, respectively, 1.96, 0.82, 1.53, and 0.99.5

Subjects were informed that by choosing a decision number they would incur
“decision costs.” The form of the costs (depending on the treatment) was explained
both verbally and in the form of a “decision cost calculator” that was accessible in
each round. When given a trial decision number, this calculator showed the costs
associated with the subject’s random number in the current period. We imple-
mented the cost calculator to help avoid any bias due to the subjects’ (possibly)
limited computational capabilities.

After each member of a group had entered his or her decision number, the
computer compared all of the decision numbers of the four members of a group.
In one-prize contests, the player with the highest decision number received a
“fixed payment” of one point and all other players received no additional pay-
ment. In two-prize contests, the two players with the two highest decision numbers
received a “fixed payment” of 0.5 points and all other players received no addi-
tional payment. If two or more group members in a one-prize contest chose the
highest decision number, then it was randomly decided which of these “tied”
members received the prize of one point. For ties in a two-prize contest we pro-
ceeded in a similar fashion, which was explained in the instructions. It was also
explained and emphasized that decision costs would be subtracted whether or not
a subject had won. This implies that subjects could incur losses. To cover these,
subjects received a lump-sum fee of $5. (Given the exchange rate of 15 points
= $1 in each treatment, all subjects started with 75 points in their experimen-
tal accounts.) Additionally, in each period subjects received an initial per-period
endowment that was equal to their expected costs in equilibrium.6 The specific
numbers are shown in Table 1.

After each period, the feedback screen first informed a subject whether or
not she had won an additional payment. Furthermore, the screen reiterated a
subject’s random number, decision number, decision costs, the difference between
the payment in the previous period and the decision costs (excluding the initial
endowment per period), and individual earnings in the previous period including
the initial endowment per period. A last piece of information that was given to
subjects depended on the number of prizes in a treatment and on whether or not
a subject had won a prize. In one-prize contests, a subject who had not won a
prize was informed about the random number of the winning subject. In two-prize
contests, a subject who won a prize was informed about the random number of

5. We expected that no one would want to set a higher decision number and so assumed that this
upper bound would not be binding on a subject. In fact, we were almost right because there were
very few instances of subjects choosing the Maxeffort.
6. In equilibrium, expected costs equal

∫ 1
0.5 c(V1A(c) + V2B(c)) dc, where V1 and V2 depend on

the treatment and A(c) and B(c) are given by equation (3). Note that expected costs in equilibrium
do not depend on the form of the cost function.
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the other winning subject, and subjects who did not win a prize were informed
about the random numbers of the two winning subjects.

In order to avoid income effects, participants were informed that after the
completion of the experiment 10 of the 50 periods would be randomly selected
to count toward monetary earnings. That is, subjects were paid according to the
sum of their individual earnings in those ten random periods. Finally, in order to
ensure that subjects had a good understanding of the decision problem and the
procedures, we started each experiment with three trial periods that did not count
toward monetary earnings.

The experiments replicated the examples of contests described in Section 2.
The decision number corresponds to effort, the random number to a subject’s
ability, the decision costs to a subject’s disutility of effort, and the payment
corresponds to the prize(s).

In an effort to test the robustness of our results and to show that they are not
an artifact of the design features employed, we ran a final “control” treatment that
relaxed several of the features of the LC-1 treatment. First, instead of having fixed
matching in groups of four subjects each, in the control treatment we employed
random matching across rounds in groups of eight subjects each where, in each
round, the eight subjects were randomly assigned to two groups of four subjects.
We recruited 48 additional subjects, leading to six independent observations for
the control treatment. Second, instead of imposing a maximal admissible bid, there
was (practically) no such limit in the control treatment.7 Third, whereas losing
subjects in the main LC-1 treatment were informed about the ability parameter
of the winner, this information was not provided in the control treatment where
the only information given was whether or not one’s effort choice led to winning
the contest. All other design features were exactly as in the main treatment LC-1.

Some remarks regarding our experimental design are in order. First, we
avoided value-laden terms in the instructions. Subjects were never called contes-
tants or competitors. Similarly, other players were called “other group members.”
Also, “prizes” were called “fixed payments.” Finally, each subject participated in
only one treatment.

4. Results

We first present the aggregate results, which (as noted in the Introduction) appear
to strongly support the theory. We then disaggregate our results and examine them
more closely. We shall demonstrate that the aggregate results mask the bifurcation
phenomenon discussed previously.

7. Note that the software tool kit used to program the treatments, z-Tree, forces the programmer to
indicate a maximum value for any input. This maximum was set equal to 1,000,000 in the control
treatment. The highest effort choice observed during the payoff-relevant periods was one choice
of 10.
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4.1. Aggregate Results

There is a sense in which an organizational designer need care only about aggre-
gate or average results. Because he is designing the organization to maximize
mean effort levels and revenues, these should be the variables he looks at. In
addition, if he is risk neutral then he need not worry about how these means are
achieved.

In line with this way of thinking, we begin with the aggregate or mean results
of our experiment, concentrating on effort behavior and revenue in the four treat-
ments. We will present summary statistics for the first and second halves of the
experiment. In our discussion of the results we will focus a bit more on experi-
enced behavior as displayed in the second half of the experiment (in an effort to
purge learning effects). Nevertheless, we will provide test results for both halves
of the experiment.

We will start our discussion by looking at the effort behavior of subjects at
the aggregate level. Toward this end, consider Figure 1. The figure consists of
eight graphs, two for each of our four treatments. In each graph we present the
equilibrium effort function (solid line) for the parameters defining that treatment.
To show the pattern of observed efforts we also present a scatter plot representing
the mean of the actual efforts put forth for a given ability parameter.

There are several things to note about Figure 1. First, the average efforts
seem to track the shape of the equilibrium effort function quite well. Second,
effort behavior appears to be continuous in that, on average, there seem to be
no large discontinuities in behavior. Finally, the levels of efforts appear to be
consistent with the equilibrium effort function. This is particularly true for the
second half of the QC-2 experiment, where the equilibrium effort function appears
to pass directly through the middle of the scatter plot of mean efforts. For the other
treatments there seems to be overexertion in LC-1 and LC-2 (independent of the
time horizon considered) and slight underexertion in QC-1 (in the second half of
the experiment).

This behavior manifests itself also in the average revenue data. Table 2
presents the mean revenue generated in each of our treatments along with the
revenue that would have been generated by our subjects if, given their ability
realizations, they had given their equilibrium efforts. (The column labeled “Sort-
ing” is explained at the end of this section, and the table’s bottom row contains
results of the control treatment to be discussed in Section 4.3.)

The revenue data presented in Table 2 are consistent with the observed
effort behavior exhibited in Figure 1. Let us concentrate on the results of the
second half of the experiment. Although revenue levels were above those pre-
dicted by the equilibrium theory in the LC-1 and LC-2 treatments with average
observed revenue being about 65% higher than average equilibrium revenue in
the LC-1 treatment (2.391 vs. 1.452) and 25% higher in the LC-2 treatment
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Figure 1. Average observed (•) and optimal (solid line) effort functions in the first and the second
half of the experiment.

(1.452 vs. 1.164), in the QC-1 treatment they were below predictions by about
18% (1.524 vs. 1.859). In the QC-2 treatment, actual average revenues were
remarkably on target (1.963 vs. 1.944). Applying a sign test8 to the data from
the second half of the experiment, we can reject the hypothesis that the median
observed revenue is equal to the equilibrium level at the 1% level in treatments

8. Consider the variable yjt where yjt = 0 if the observed revenue in period t in session j is less
than or equal to the equilibrium level and yjt = 1 if observed revenue exceeds the equilibrium level.
Then test whether or not the variable yjt is binomial with probability 0.5 that yjt = 1.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-000.jpg&w=329&h=359
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Table 2. Observed revenue and sorting (standard deviations, based on group averages, in
parentheses).

Average revenue

Treatment Rounds Optimal Observed Sorting

LC-1 First 25 1.435 2.380 84/150
(0.245) (0.461) (56.0%)

Last 25 1.452 2.391 86/150
(0.168) (0.281) (57.3%)

LC-2 First 25 1.307 1.752 79/150
(0.073) (0.126) (52.7%)

Last 25 1.164 1.452 70/150
(0.061) (0.312) (46.7%)

QC-1 First 25 1.849 1.878 70/125
(0.104) (0.222) (56.0%)

Last 25 1.859 1.524 77/125
(0.160) (0.270) (61.6%)

QC-2 First 25 1.987 2.127 56/125
(0.145) (0.296) (44.8%)

Last 25 1.944 1.963 65/125
(0.093) (0.364) (52.0%)

Control First 25 1.431 1.706 126/300
LC-1 (0.143) (0.314) (42.0%)

Last 25 1.402 1.289 122/300
(0.049) (0.379) (40.7%)

LC-1, LC-2, and QC-1. For treatment QC-2, however, this hypothesis cannot be
rejected at any conventional significance level (p = 0.858, two-tailed).9

Recall that theory predicts that in a linear-cost contest revenue is maximal
if only one prize is awarded, whereas in our quadratic-cost contest, the designer
maximizes total effort by awarding two equal prizes. Both of theses predictions
are confirmed by our data. Concentrating on results in the second half of the exper-
iment, we see in Table 2 that, whereas in treatment LC-1 the average observed
revenue is 2.391, it is only 1.452 in treatment LC-2. Taking one matching group’s
average total effort as a single observation, a one-tailed Mann–Whitney U-test
reveals that this difference is highly significant (p = 0.001). In the quadratic-cost
contests, the average total effort of 1.963 in treatment QC-2 compares to an aver-
age of 1.524 in treatment QC-1. Again this difference is statistically significant
(p = 0.028).10

9. For the first half of the experiment, the p-values are p < 0.001 (LC-1 and LC-2), p > 0.9
(QC-1), and p = 0.031 (QC-2).
10. The prediction that revenue in a linear-cost (respectively, quadratic-cost) contest is maximal if
only one prize is (respectively, two prizes are) awarded is also confirmed with respect to the data in
the first half of the experiment: LC-1 vs. LC-2 (p = 0.012) and QC-1 vs. QC-2 (p = 0.075).
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One might also ask how reliable the different contests are in terms of pro-
ducing the levels of average total efforts reported in Table 2. A look at standard
deviations, given in parentheses in Table 2, is revealing. One-prize contests are
more stable than two-prize contests in the sense that standard deviations are lower
in the former than in the latter (contests with linear costs: 0.281 vs. 0.312; contests
with quadratic costs: 0.270 vs. 0.364; rounds 26–50).

Finally, one can ask whether our contests were efficient in sorting and pro-
moting workers. For example, if there are one or two positions available for
promotion (as in our experimental contests), then the goal would be to select the
worker with the highest ability or, respectively, the workers with the two highest
abilities. This can be achieved with the contests studied in this paper because the
equilibrium effort functions are strictly monotonic with respect to ability. Thus
if all subjects exert effort according to the equilibrium effort function, optimal
sorting should occur. That is, in each round and each group of four contestants,
we would observe that the subject with the highest ability exerts the highest effort,
the subject with the second-highest ability exerts the second-highest effort, and
so on. It is clear that, in an experimental setting, optimal sorting in this strict
sense cannot be expected throughout the entire experiment. 11 Instead we simply
ask: In how many cases did the contestant with the highest ability win a one-prize
contest; and in how many cases were the contestants with the two highest abilities
the winners in a two-prize contest? The results are displayed in the fifth column
of Table 2 under “Sorting.” The entry in each cell gives the number of cases in
which sorting worked, the number of all cases, and the percentage (in parenthe-
ses). Looking at the results in the second half of the experiment, sorting in this
weaker sense occurred in 57.3%, 46.7%, 61.6%, and 52.0% of the cases in treat-
ment LC-1, LC-2, QC-1, and QC-2, respectively. Stated differently: In about 40%
(50%) of the cases in the one-prize (two-prize) contests, contestants not having
the highest abilities won the contests. Note, however, that in the majority of one-
prize contests that did not exhibit strict sorting, the winner was the subject with
the second-highest ability yet who exerted more effort than the highest-ability
subject. Hence it is the “rat race” that is responsible for inefficiencies.12 Note
finally that, not surprisingly, the proportion of contests that do exhibit sorting is
higher in one-prize contests than in two-prize contests.

In summary, we find (as predicted by the theory) that with linear costs a
one-prize contest raises higher revenues than a two-prize contest and vice versa
with quadratic costs. Furthermore, contests with linear costs seem to elicit excess
efforts whereas those with quadratic costs elicit effort levels that are either too

11. In fact, optimal sorting in this strict sense is observed in only about 10% of all rounds in the
second half of the experiment in the four different treatments.
12. There are, however, also cases in which contestants with the least or second-to-least ability
won a contest.
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low or approximately equal to the equilibrium efforts. Finally, we observe that in
only 50%–60% of the cases (depending on the treatment) are the contests won
by the subjects with the highest abilities.

4.2. Disaggregated Results

Looking at our data only as aggregated within treatments, as we have done so far,
could give one the impression that the observed behavior was basically continuous
and, on average, not far from that predicted by the theory. In this section we dispel
any such impressions by presenting a more disaggregated analysis of the data. We
will do this in several steps. First we present a small sample of individual effort
functions to give a quick first impression of what typical effort behavior looks
like. Although this is not an exhaustive presentation of all effort functions, the
selected subjects are by no means outliers and so should give a good idea of what
we are talking about. Second, we present a set of histograms—one for each of
the four treatments—that portray the subjects’ efforts. These histograms illustrate
that efforts tended to be bimodal: They were either heavily concentrated around
zero (for those who dropped out) or scattered across high effort levels (for those
entering the rat race), with relatively few effort levels chosen in the middle ranges.
In other words, subjects either dropped out or became workaholics. Finally, we
perform a model-selection test by contrasting, individual by individual, the good-
ness of fit of the best-fitting stepwise linear effort function against the best-fitting
continuous function of the form specified by the equilibrium theory. We argue
that subject behavior can best be described by a step function characterized by an
ability cutoff level c∗ such that for all abilities below c∗ (low costs) effort is very
high while for abilities above c∗ (high costs) efforts are low (or zero).

4.2.1. Individual effort functions. Figure 2 presents individual effort functions
in both halves of the experiment from four subjects, one each selected from the
four treatments. Of course, not all individuals exerted effort in this manner, but
in this section we claim that these effort functions are typical. We show, more
precisely, that rather than being chosen in a smooth and continuous manner, effort
is typically characterized by a discontinuous step function with a cutoff effort level
of c∗

i for individual i. Although c∗
i varies among individuals and some individuals

violate the rule, we still consider the effort functions of these four subjects to be
broadly representative of behavior.

Note how dramatic these effort functions are. For example, subject 4 in treat-
ment LC-2 clearly exhibits a c∗

i of 0.70 (rounds 26–50) by dropping out for all
ability levels above it, and subject 5 in treatment QC-2 drops out for all c∗

i ≥ 0.80
(rounds 26–50). Observe also that, when subjects exert positive effort, they often
do so at levels far above those prescribed by the equilibrium effort function. These
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Figure 2. Examples of individual behavior (optimal, solid line; observed, •); cut-off levels c∗
i in

parentheses (see Section 4.2.3).

under- and overexertions are precisely the bifurcations described in the Introduc-
tion. It is important to note that the subjects’ effort functions in Figure 2 display
the bifurcation pattern already in the first half of the experiment.

4.2.2. Effort histograms. Perhaps a more efficient way to demonstrate the bifur-
cation of individual effort in these experiments is to present Figure 3, which shows
histograms of observed individual effort levels (right-hand side) in the four treat-
ments along with what we would expect these histograms to look like if, given
the actual ability draws of our subjects, they had all made their equilibrium effort

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-001.jpg&w=331&h=356
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Figure 3. Histograms of individual effort choices in rounds 26–50.

choices (left-hand side). The results in Figure 3 are from the second half of the
experiment.

To describe these histograms, let us look first at those of treatment LC-2
(second from the top in Figure 3). As shown in the left panel, if subjects had
all used their equilibrium effort functions to select effort levels (given the ability
realizations in the sessions), then we would expect to see a more or less uniform
distribution of efforts. The right panel presents the actual observations, which

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-002.jpg&w=331&h=386
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are quite different. There is a clustering of efforts around the zero effort level,
indicating a large amount of dropout behavior, and a large number of effort levels
above 0.60, indicating efforts that were greater than expected. The same pattern
exists in all of the other figures, with a more pronounced bifurcation in treatment
QC-1 and QC-2.

From these histograms it should be clear that behavior in the experiments
was bimodal. Either subjects dropped out or they exerted above-expected effort
levels, which is consistent with our bifurcation hypothesis.

4.2.3. Step functions. Final support for our bifurcation hypothesis comes from
the following model selection exercise. If we are correct in supposing that individ-
ual behavior was bimodal and exhibits either dropout or overexertion behavior,
then we would expect that the best-fitting model of individual effort would be a
step function characterized by a cutoff ability level, c∗

i , such that if a subject i’s
observed ability, ci , were above c∗

i then the subject would drop out, exerting little
or no effort; and if ci were below c∗

i then the individual would exert positive and
substantial effort. This model can be tested against the equilibrium model, which
posits a continuous effort function of the form specified by equations (2) and (5),
or against the best-fitting continuous effort function of that general form.

To compare these models we first fit a simple switching regression model for
each subject (separately for each of the two halves of the experiment) of the form

bit = α0 + α1cit + α2Dc∗
i
+ α3Dc∗

i
cit + εit , (6)

where bit (respectively, cit ) is subject i’s effort (respectively, ability) in period
t and where Dc∗

i
is a dummy equal to 1 if cit > c∗

i and equal to 0 otherwise.
The parameter c∗

i ∈ {0.51, 0.52, . . . , 1.00} is the value of the ability at which the
structural break in the subject’s effort behavior occurs. Note that if Dc∗

i
= 0 then

equation (6) reads

bit = α0 + α1cit + εit ,

but if Dc∗
i

= 1 it reads

bit = (α0 + α2) + (α1 + α3)cit + εit .

Thus the graph of equation (6) consists of two line segments with intercepts
α0 before and α0 + α2 after the break and slopes α1 before and α1 + α3 after
the break, respectively. If −α2 �= α3c

∗
i then the graph of equation (6) has a

discontinuity at the point of structural break. The best-fitting breakpoint c∗
i and

the respective coefficients in equation (6) were estimated from the data.
For this purpose, we estimated equation (6) for all possible points of struc-

tural break c∗
i ∈ {0.51, 0.52, . . . , 1.00} and each subject separately, and chose as
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the optimal breakpoint the one that maximizes the adjusted R2. Using the cor-
responding estimates of the coefficients in equation (6) we then computed, for
each subject i and for each period t ∈ {1, 2, . . . , 50}, the predicted effort (bt

i )
pred;

we also computed, subject by subject, the sum of the squared deviation SSDi ,
defined as

SSDi =
25∑
t=1

(
(bt

i )
pred − (bt

i )
obs)2

,

where (bt
i )

obs is the observed effort of subject i in period t . (The SSDi for the
second half of the experiment were computed similarly.)

We compared the resulting SSDi values of this estimation to two others. The
first was the SSDi generated using the predictions of the equilibrium effort func-
tions as given in equations (2) and (5). Second, we compared our SSDi to those
generated by estimating the best-fitting effort function, for each individual, of the
form of the respective equilibrium effort function in each of the four treatments
as given in equations (2) and (5). For instance, we used ordinary least squares
(OLS) regression to estimate, for each subject in treatment LC-1, the model

bit = β0 + β1cit + β2c
2
it + β3 ln cit + εit ; (7)

here, again, bit (cit ) is subject i’s effort (ability) in period t . (Note that equation
(7) has the form of the equilibrium effort function given in equation (2) except that
the coefficients are undetermined.) We did likewise for treatment LC-2. Recall
that the equilibrium effort functions for the treatments with quadratic costs (i.e.,
treatments QC-1 and QC-2) are the square roots of the equilibrium effort functions
in the respective linear-costs treatments (compare equations (2) and (5)). In order
to use OLS regression for the estimation in these treatments, too, we proceed as
follows. Consider for example treatment QC-1. Instead of estimating equation
(5), we estimated the model

(bit )
2 = β0 + β1cit + β2c

2
it + β3 ln cit + εit ,

that is, the squared equation. To compute the SSDi for these cases, we then used
the radical of the predicted efforts.

The results of our exercise are given in Table 3, which presents the average
SSDi value for each treatment and each half of the experiment. Columns (2) and
(3) present the results of our switching regression model; columns (4) and (5) [(6)
and (7)] present the results of our equilibrium (equilibrium-form) models.

Our simple switching regression model clearly outperforms the prediction of
both the equilibrium and equilibrium-form models, regardless of the time hori-
zon considered. In fact, using a Wilcoxon test to compare the individual SSDi
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Table 3. Overview of the sum of the square deviation (SSD).

Average sum of squared deviations (SSD) based on p-level

Switching regr. Equilibrium “Equilibrium Wilcoxon test
model rounds rounds form” rounds rounds

Treatment 1-25 26-50 1-25 26-50 1-25 26-50 1-25 26-50
(1) (2) (3) (4) (5) (6) (7) (8) (9)

LC-1 3.03 2.86 9.05 8.77 7.08 3.63 <0.001 <0.001
LC-2 0.59 0.29 1.96 1.82 1.54 0.48 <0.001 <0.001
QC-1 2.29 0.87 4.43 3.49 5.27 2.10 <0.001 <0.001
QC-2 1.02 0.59 2.66 2.08 3.31 1.05 <0.001 <0.001
Control
(LC-1) 3.51 2.39 12.05 7.87 9.92 3.06 <0.001 <0.001

values based on the switching regression model versus the “equilibrium form”
regressions indicates that the former yields a much better fit than does the latter.

Table 4 shows the average cutoff levels in each of the four treatments as
well as (two-tailed) p-values of pairwise Mann–Whitney U-tests. Recall that the
switching regime consists of two line segments with a (possible) jump between the
two segments. Consider the results from rounds 26–50 and note that the average
cutoff points in the one-prize contests are lower than those in the two-prize contests
(0.71 in LC-1 vs. 0.78 in LC-2; 0.67 in QC-1 vs. 0.81 in QC-2). As it turns out,
these differences are also highly significant statistically (Mann–Whitney U-tests).
This means that subjects in the one-prize contests exert serious effort only when
their ability parameters, the ci , are comparatively low. This implies that they exert
low effort levels over a much larger interval of the domain of their effort function.
Finally, note that the differences between cutoff levels within the two one-prize
and the two two-prize contests are small and not significant.

Finally, having established that each subjects’ behavior is best described by
a simple (discontinuous) step function, one might ask whether this is consistent
with the absence of behavior discontinuities in the average bidding functions
for each treatment, as shown in Figure 1. The seeming inconsistency between
individual effort functions (as shown in Figure 2) and the average effort functions

Table 4. Average cutoff levels (in parentheses) and two-tailed p-values of pairwise differences
in the first and the second half of the experiment.

Rounds 1–25 Rounds 26–50

LC-1 LC-2 QC-1 QC-2 LC-1 LC-2 QC-1 QC-2
Treatment (0.72) (0.82) (0.71) (0.78) (0.71) (0.78) (0.67) (0.81)

LC-1 — — — — — — — —
LC-2 0.001 — — — 0.013 — — —
QC-1 0.786 0.002 — — 0.174 0.000 — —
QC-2 0.171 0.190 0.134 — 0.003 0.403 0.000 —
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Figure 4. Average observed (•) and optimal (solid line) effort functions in the first and the second
half of the control treatment.

(as shown in Figures 1 and 4) is resolved by the observation that, even though
different subjects have different cutoff points, the aggregation of (discontinuous)
individual effort functions leads to a more or less smooth average effort function.

4.3. A Control Treatment

As stated in Section 3, to check whether our main result of a bifurcation effect
in individual effort choices is robust to changes in the design features, we ran a
control treatment. This treatment is a variant of LC-1 with the following three
changes: We used random instead of fixed matching; there was no maximum
admissible bid; and less feedback was offered the subjects. In particular, subjects
only were informed about whether they had won a prize, not about the ability of
the winning other subject(s). All other design features were exactly as in the main
treatment LC-1.

Let us first check the effort behavior in the control treatment at the aggre-
gate level. Figure 4 shows the equilibrium effort function for the control treatment
(solid line) along with the average effort chosen conditional on each ability param-
eter. In the second half of the experiment (right panel) we observe that the average
efforts again track the shape of the equilibrium effort function quite well except
for very low levels of the ability parameter, where average observed efforts are
lower than predicted. But again it seems fair to say that no clear discontinuity in
behavior can be discerned in the average effort function.

The bottom row of Table 2 gives the mean revenue generated in each treatment
along with the revenue associated with equilibrium efforts. Whereas average
observed revenue in the control treatment is higher than average equilibrium
revenue in the first half of the experiment (1.706 vs. 1.431), the reverse holds
in the second half (1.289 vs. 1.402). A sign test reveals that we can reject the
hypothesis that the median observed revenue is equal to the equilibrium level in
the control treatment at the 10% level (p = 0.001, rounds 1–25; p = 0.086,
rounds 26–50; two-tailed). Table 2 also indicates that the control treatment does

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-003.jpg&w=331&h=94
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Figure 5. Histograms of individual effort choices in the control treatment (variant of LC-1) in
rounds 26–50.

worse than the original treatment LC-1 in terms of selecting the worker with the
highest ability: In only 41.3% of the cases (in the second half of the experiment)
does the subject with the highest ability actually win the contest (vs. 57.3% in
treatment LC-1).

Next, we review Figure 5, which depicts histograms of observed individual
effort choices in the control treatment (right panel) along with a histogram of
choices that would result from equilibrium behavior by subjects (left panel) in
the second half of the experiment.13 We see that there is again a large number
of observed effort choices close or equal to 0, implying a high degree of dropout
behavior.14 Furthermore, with regard to observed behavior there are virtually no
choices in the interval from 0.55 to 0.95, and yet there is a cluster of high-effort
choices around 1.25. Comparing Figure 5 with the top row of Figure 3, we observe
that the main new effect of the control treatment is the increase of choices around
0.15 In any case, Figure 3 suggests that also the behavior in the control treatment
is bimodal.

In order to check this, we repeat the model selection exercise reported in
Section 4.2.3 for the data of the control treatment. The results are given in the
bottom row of Table 3. Again, our simple switching regression model clearly
outperforms the prediction of both the equilibrium and equilibrium-form models
in both halves of the experiment. In fact, a Wilcoxon test reveals that the SSDi

values of the switching regression model are significantly lower than those of
the equilibrium-form model. Finally, the average cutoff level for the switching
regime in the control treatment is 0.70 (rounds 26–50) and is thus virtually the
same as the level in the main treatment LC-1 (see Table 5, rounds 26–50).

13. There is one effort choice of 9 that is not shown in the histogram of observed behavior.
14. There are three subjects (from three different matching groups) in the control treatment who
chose an effort of 0 throughout the second half of the experiment.
15. There are twice as many individual decisions in the control than in the LC-1 treatment (1,200
vs. 600, last 25 rounds) because there are twice as many subjects.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-004.jpg&w=331&h=99
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In summary, our main result of a bifurcation effect in individual effort choices
appears to be robust to changes in the design features employed in the main
treatments. The main differences between behavior in the control treatment and
in the main treatment LC-1 is a reduction of average effort choices for low levels
of the ability parameter (see Figure 4) and an increase of choices around 0 in the
control treatment (see Figures 3 and 5).

4.4. A Theoretical Explanation for the Bifurcation Effect

One possible explanation for these bifurcation results is that subjects are loss
averse. Intuitively, when a subject’s cost of effort is high, chances are that the
other competitors have a lower cost of effort and thus bid high. Then this subject
might exert little or no effort for fear of losing the cost of effort. Conversely, if
a subject’s cost of effort is low then chances are that the other competitors have
a higher cost of effort and thus bid low. Then this subject might exert very high
effort for fear of not winning the prize.

The argument can be made formally. For this purpose, assume the standard
loss-aversion function (see Kahneman and Tversky 1979):

u(x) =
{

xα if x ≥ 0,

−λ(−x)α if x < 0,

where α > 0 and λ > 1; then consider, for example, treatment LC-1. The maxi-
mization problem of a contestant in this treatment, assuming that all contestants
are loss averse, is

max
x

[(V1 − cx)α Pr(Win) − λ(cx)α(1 − Pr(Win))], (8)

where Pr(Win) = (1 − F(b−1(x)))k−1 and V1 = 1 is the prize (see Section 2.1).
That is, with Pr(Win) a contestant wins the contest, in which case his utility is
(V1 − cx)α . With the complementary probability the contestant loses the contest,
in which case his utility is −λ(cx)α . The first-order condition leads to a differential
equation (with the boundary condition that a contestant with ability c = 1 exerts
effort 0) that can be solved numerically.

Figure 6 shows the optimal bidding function assuming risk-neutral contes-
tants (as in M-S) versus assuming loss-averse contestants (with α = 0.3 and
λ = 1.25). Inspection of Figure 6 shows that, assuming loss-averse contestants,
we can replicate the two main facts about observed individual bidding functions:
When the cost of effort is high (respectively, low), the optimal effort of loss-averse
contestants is smaller (respectively, higher) than the optimal effort of risk-neutral
contestants. Clearly, depending on parameter choices, we can show that the opti-
mal effort of loss-averse contestants is essentially 0 when costs of effort are high
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Figure 6. The equilibrium bidding function in treatment LC-1 for risk-neutral and loss-averse
bidders (α = 0.3, λ = 1.25).

and that this effort is much greater when costs of effort are low. That is, by
assuming loss aversion we can generate the dropout and workaholic behavior we
observe in our experiments.

5. Conclusions and Discussion

In this paper we have reported on an incentive mechanism, proposed by
Moldovanu and Sela (2001), whose objective is to maximize the average effort
level exerted in an organization of workers. At the equilibrium of this mechanism,
workers are expected to choose effort functions that are continuous in their cost of
effort. Although this prediction appears to be supported in the aggregate, we have
found that the underlying effort functions on the individual level are actually a
set of discontinuous step functions whereby low-cost, high-ability workers exert
higher than predicted levels of effort and workers with low-ability and high-cost
drop out, exerting close to zero effort. We have attributed this result to the possibil-
ity that subjects behave in a loss-averse manner when faced with this mechanism.
This should be of note for those interested in mechanism design, because it warns
us that a successful mechanism must elicit behavior identical to that assumed
by the designer in theory. The M-S mechanism was predicated on risk-neutral
expected utility maximization, but it appears to have elicited loss-averse behavior
instead. Hence, in the light of this observed behavior, the M-S mechanism may
actually be not optimal.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/jeea_a_00002&iName=master.img-005.jpg&w=327&h=185
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Finally, our results have implications for the efficiency of organizations. More
precisely, organizations that hope to sort and reward workers on the basis of their
ability will likely expect that, on average, the most productive workers receive
the organizational prizes and the lesser ones do not. Because workers usually
differ with respect to their abilities and because the equilibrium effort functions
in the M-S mechanism are strictly monotonic with respect to ability, the contests
analyzed in this study theoretically serve the purpose of awarding promotion
prizes to those workers with the highest abilities. We observe, however, that
only 50–60% of the cases in our experimental contests are won by highest-ability
subjects. Despite this fact, if the worker with the highest ability fails to be rewarded
then the one with the second-highest ability usually is. Hence the lack of strict
ordering is not a gross mistake and is likely to occur when workers “tremble”
when selecting their effort levels.

Appendix: Instructions for Treatment LC-2

This is an experiment in decision-making. If you make good decisions you can
earn a substantial amount of money, which will be paid to you when you leave. The
currency in this decision problem is called Points. All payoffs are denominated
in this currency. At the end of the experiment your earnings in Points will be
converted into real U.S. dollars at a rate indicated below.

As you read these instructions you will be in a room with a number of other
subjects. Each subject has been randomly assigned an (electronic) ID number.
The experiment consists of 50 decision rounds. In each decision round you will
be grouped with three other subjects by a random drawing of ID numbers. These
three subjects will be called your “group member.” Your group members will
remain the same throughout the entire experiment. The identity of your group
members will not be revealed to you.

The Decision Problem

In the experiment you will perform a simple task. At the beginning of each
round the computer will first independently generate a random number for every
group member. The random number will be one of the 51 numbers in the set
{0.50, 0.51, . . . , 1.00}. Each of these 51 numbers has an equally likely chance of
being chosen. You will then be informed about the random number that was cho-
sen for you. You will, however, not be informed about the random numbers that
were chosen for the other group members. These random numbers will be impor-
tant to you since they will determine your costs in the experiment as explained
below. After informing you about your random number, the computer will ask
all group members to simultaneously choose a Decision Number (which will be
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the only decision you have to make in a round.) This Decision Number must
be chosen from the set of numbers {0.00, 0.01, 0.02, . . . , 0.82}. Associated with
each Decision Number are decision costs. These decision costs depend on your
random number as well as on the Decision Number you chose. More precisely,
the decision costs will be equal to the product of the random number and your
Decision Number. For example, say you receive a random number of 0.6 and
in the experiment choose a Decisions Number of 0.7. Then your cost would be
0.42 = 0.7 × 0.6. If instead your random number was 0.9 and you chose a
Decision Number of 0.7, your decision costs would be 0.63 = 0.7 × 0.9. You
can consider your random number to be the per-unit cost of choosing a Decision
Number so the higher the random number the higher is that per unit cost. Note
that the decision costs associated with the Decision Number 0 are equal to 0.

To help you calculate what the cost of any Decision Number will be given
your random number, we have provided you with a calculator that is located on
the left-hand side of your decision screen. To find the decision cost associated
with any Decision Number simply enter a Decision Number into the box and then
push the button “compute.” Your cost will then be shown to you at the top left
corner of your screen.

When you are ready to make your final decision, please enter your Decision
Number into the box on the right hand side of your screen and push the button
“OK.”

Calculation of Payoffs

Your payoff in each decision round will be computed as follows. First of all, in
each round each participant will receive a flat payment of 0.20 Points no matter
which number he or she and the other group members have chosen. Whether or not
you receive an additional fixed payment will be determined in the following way.
After every member of your group has entered his or her Decision Number, the
computer will compare all of the Decision Numbers of the four members of your
group. If your Decision Number is one of the two highest, you will receive the
fixed payment of 0.5 Points otherwise you receive no additional fixed payment.
If three or more group members chose the highest Decision Number, then the
computer will randomly determine which two of these “tied” members receive
the additional fixed payment of 0.5 Points. Those subjects with Decision Numbers
that are not the highest two will receive nothing. From your fixed payment (of
either 0.5 Points or 0 Points) you will have to subtract your decision cost. Hence,
while choosing a high Decision Number increases the probability that you will
win a positive fixed payment it also increases the cost of doing so. In addition, if
your Decision Number is not one of the two highest of the group, you will receive
no additional fixed payment and have to subtract your decision costs from your
initial flat payment.



Müller and Schotter Workaholics and Dropouts in Organizations 741

Your payoff in a given round is calculated as follows: First, as mentioned
above, you receive a flat payment of 0.20 Points. In addition if you chose one of
the two highest Decision Numbers you will be paid a fixed payment of 0.5 Points
from which you will subtract your decision cost. If you do not choose one of the
two highest Decision Numbers, you will receive a fixed payment of 0 and still
have to subtract your decision costs. The resulting number is multiplied by 100
to yield your final Points payoff. This is then converted into dollars at the rate of
15 Points = $1. Thus, your final payoff in Points in a given round is:

Payoff = 100 × (Flat payment + Fixed payment(0 or 0.5) − Decision Cost).

Note: To make life easier for you so that you do not have to enter dec-
imal Points, you will not be asked to enter a Decision Number from the set
{0.00, 0.01, 0.02, . . . , 0.82} but from the set {0, 1, 2, . . . , 82}. The computer will
then automatically divide the Decision Numbers of all group members by 100
before starting to evaluate them.

Example of Payoff Calculation

Suppose the following occurs: Group member 1 gets assigned random number
0.80 and chooses Decision Number 0.21 (21). Group member 2 gets assigned
random number 0.55 and chooses Decision Number 0.17 (17). Group member 3
gets assigned random number 0.91 and chooses Decision Number 0.05 (5). Group
member 4 gets assigned random number 0.77 and chooses Decision Number
0.33(33).

Because group members 4 and 1 chose the highest two Decision Numbers
they receive the Payment of 0.5 Points whereas all other group members receive
no payment. Therefore, group member 4’s earnings in this round would be 100 ×
(0.20 + 0.5 − 0.77 × 0.33) = 44.59 Points whereas group member 1’s earnings
in this round would be 100 × (0.20 + 0.5 − 0.80 × 0.21) = 53.2 Points. Group
members 2 and 3 each receive no additional payment. Therefore group member
2 would earn 100 × (0.20 + 0 − 0.55 × 0.17) = 10.65 Points, and, finally, group
member 3 would earn 100 × (0.20 + 0 − 0.91 × 0.05) = 15.45 Points.

Note again that the decision cost is a function of the random number and the
Decision Number. Note also that your earnings in a round depend on the following:
your random number, your Decision Number, and your group members’ Decision
Numbers. Your earnings do not depend on your group members’ random numbers.

Continuing Rounds

After round 1 is over, the same procedure will be repeated for round 2, and so
on for 50 rounds. That is, in each round a random number will first be generated
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for you, then you will choose a Decision Number which will be compared to the
Decision Numbers of the other members of your group, and the computer will
calculate your earnings for the round.

After each round you will be informed about which payment you receive. In
case you do receive a positive payment you will be informed about the random
number of the other group member who also received a payment of 0.5 Points. In
case you do not receive a positive payment (because your Decision Number was
not one of the two highest among the Decision Numbers of all group members or
because you were not randomly selected in case you and at least two other group
members chose the highest Decision Number) you will be informed about the
random numbers of the group members who received the payment of 0.5 Points.

Calculation of Final Monetary Payment

At the start of the experiment you get a one-off endowment of 75 Points. (This is
the $5 show-up fee you were promised, see below.)

When round 50 is completed, the computer will randomly select 10 of the
50 rounds. Your final payoff in the experiment will be the sum of your individual
earnings in Points for only these 10 rounds (plus your endowment). For each 15
Points you will be paid $1.

Trial Periods

At the beginning of the experiment there will be three trial periods that do not
count towards payment of real money.
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