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Theory, experimental studies, as well as antitrust guidelines suggest that symmetry among firms is conducive
to more collusive outcomes. We test this perception in a series of experimental repeated Bertrand duopolies
where firms have convex costs. We implement symmetric as well as asymmetric markets that vary in their
degree of cost asymmetry among firms. We find no evidence of symmetric markets being more prone to col-
lusion than asymmetric markets. If anything, asymmetry helps firms coordinate on higher prices and achieve
higher profits.
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1. Introduction

The ability of economic agents to reach outcomes that are collectively
desirable, even if (and especially when) they conflict with short-term in-
dividual incentives, is a primary focus of economics. In market environ-
ments, the possibility for firms to collude and sustain high prices
instead of harshly competing is not only of high theoretical interest but
also of high policy relevance, as antitrust authorities throughout the
world have come to see the fight against collusion as one of their main
tasks. There is a large body of literature dealing with tacit collusion.2

The general view about collusion-facilitating market characteristics is
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thatfirm symmetry (in product ranges, costs, demands, etc.)makes collu-
sion easier. For instance, in his classical textbook, Scherer (1980; p. 205)
writes “…themore cost functions differ from firm to firm, themore trou-
blefirmswill havemaintaining a commonprice policy…”Motta (2004; p.
143) notes that “the more firms are asymmetric (in capacities, market
shares, costs or product range) the less likely collusion will be” and pro-
ceeds to show in a technical section (4.2.5) that “symmetry helps collu-
sion.” Similarly, in their report to the European Commission, Ivaldi et al.
(2003) elaborate on the finding that “cost asymmetries hinder collusion”
(section III.9).

This consensus among economists has influenced policy-making.
The US ‘horizontal merger guidelines’ state at section 2.11 that “[m]
arket conditions may be conducive to or hinder reaching terms of co-
ordination. For example, reaching terms of coordination may be facil-
itated by product or firm homogeneity and by existing practices
among firms (…).”3 Similarly, the European Commission's ‘horizontal
merger guidelines’ state at recital 48 that “[f]irms may find it easier to
reach a common understanding on the terms of coordination if they
are relatively symmetric, especially in terms of cost structures, market
shares, capacity levels and levels of vertical integration.”4 As a matter
3 Our italics. The guidelines can be found at http://www.usdoj.gov/atr/public/
guidelines/horiz_book/toc.html (20 August 2011). In the following quotations
“reaching terms of coordination” is to be taken as official parlance for “tacit collusion.”

4 Our italics. The guidelines can be found at bhttp://ec.europa.eu/competition/
mergers/legislation/notices_on_substance.html> (20 August 2011).
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of fact, the decision practice of the European Commission is remark-
ably in line with this guidance. Davies et al. (2011) show that in
merger cases, concerns regarding ‘coordinated effects’ are raised
only when the post-merger market structure is predicted to be a
symmetric duopoly.

This general agreement on the role of cost asymmetry finds some
support in the theoretical literature. A number of articles have argued
that asymmetry makes tacit collusion harder in repeated games, in
the sense of raising the critical discount rate needed for collusion to
be sustainable as a subgame-perfect equilibrium. Those contributions
typically argue that either the deviation profit or the punishment
profit of a lower-cost firm is higher, in other terms, that such a firm
has higher short-term incentives to cheat on a cartel agreement or
that other cartel members have a reduced ability to retaliate. Bae
(1987) and Harrington (1991) study repeated Bertrand competition
under constant returns to scale. Rothschild (1999) does the same
for Cournot competition and Davidson and Deneckere (1990) for
Bertrand–Edgeworth competition. Those papers appeal to grim trig-
ger strategies. Vasconcelos (2005) introduces harsher punishments
and looks at a larger class of equilibria in the Cournot case; so do
Compte et al. (2002) for Bertrand–Edgeworth competition. Miklós-
Thal (2011) recently provided a full treatment of repeated Bertrand
competition under different but constant unit costs by using optimal
punishments à la Abreu (1986, 1988). The analysis is affected by the
use of harsher or optimal punishments (and by the mode of competi-
tion) but the general conclusion remains that (efficient) collusion is
harder to sustain under cost asymmetry.

The experimental results that are available are in line with this as-
sertion. Mason et al. (1992) concern themselves with the impact of
asymmetry on Cournot duopolists in a finitely repeated-game envi-
ronment (fixed matching) and report that “asymmetric markets are
less cooperative and take longer to reach equilibrium than symmetric
markets.”5 Fonseca and Normann (2008) study experimental
Bertrand–Edgeworth oligopolies and find that for a given number of
firms (two or three) asymmetric markets exhibit lower prices than
symmetric markets (under a fixed-matching, random-termination
protocol). Keser (2000) investigates experimental price-setting du-
opolies with demand inertia, as introduced by Selten (1965), in envi-
ronments where (constant) unit costs are symmetric. There are
considerable variations in prices over time within markets, as well
as across markets, but by comparing results to those of Keser
(1993), which involved asymmetric costs, the author concludes that
in the latter environment “we observed […] a significantly lesser de-
gree of cooperation than in the symmetric cost situation.”

The canonical model of Bertrand competition with constant unit
costs has only recently been the subject of more intense experimental
investigations.6 Dugar and Mitra (2009) study the impact of asymme-
try in constant unit costs on prices in experimental Bertrand duopo-
lies under fixed matching and random assignment of roles across
periods. They report that symmetric markets achieve higher prices
than asymmetric markets.7
5 See Mason and Phillips (1997) for a confirmation and the introduction of incom-
plete information (about the payoff structure) in this setting.

6 See Fouraker and Siegel (1963), Dufwenberg and Gneezy (2000, 2002), and Bruttel
(2008) for treatments of the symmetric cost case.

7 However, that is also true of experimental designs that are more conducive to one-
shot play. Indeed, Dugar and Mitra (2011) use a protocol involving random matching
of subjects (but fixed assignment of roles), and reach the same conclusion. Boone et
al. (2012) also analyze homogenous-product Bertrand markets in a within-subject
random-matching design where firms have constant but different marginal costs. They
find that while market prices converge to the Nash prediction in two of their three
treatments where two or three firms all have different costs, market prices stay above
the predicted level in the condition where two firms have the same low unit cost and a
third firm has a higher one.
In this paper, we experimentally investigate the extent of tacit col-
lusion in homogenous-product Bertrand duopolies under convex
costs. Those markets are interesting from both a theoretical and a
practical point of view. Theoretically, such games typically admit a
whole interval of strict, Pareto-ranked Nash equilibria which may or
may not contain the joint profit-maximizing strategy profile (Dastidar,
1995). When they don't, as in our experiment, there is a conflict be-
tween short-term private incentives and the joint interest of players
but, contrary to standard prisoner's dilemma supergames (or, say,
Bertrand competition under linear costs), the design of punishments
or the implementation of trigger strategies in the repeated game is com-
plicated by the multiplicity of equilibria in the one-shot game.

A key feature of Bertrand competition is the obligation for firms to
serve all demand addressed to them at their posted price, even if ration-
ing were more profitable.8 Obviously, this characteristic makes
Bertrand competition special, and different from most simple posted-
offer markets where sellers have a fixed supply. However, competition
in certain sectors can be stylized as Bertrand pricing under convex costs.
For instance, utilities such as gas, water and electricity providers face
risingmarginal costs and are typically under the (legal or technical) ob-
ligation to adjust their supply to customers' demand. The same is true of
businesses which operate under a subscription system, e.g., telecom
services. In many countries, such markets are or have been dominated
by two main firms.9 More generally, “the Bertrand assumption is plau-
sible when there are large costs of turning customers away” (Vives,
1999, p.118).10 Hence, notwithstanding the usual and legitimate con-
cerns about external validity, our experimental investigation can shed
light on a common market structure, in which the strategic incentives
are somewhat more complicated than usual.

In our experiment, we examine whether repeatedly interacting
duopolists are able to coordinate tacitly on high prices under varying
cost conditions. More precisely, we analyze price choices in three
fixed-matching treatments featuring cost symmetry, a small asym-
metry and a larger asymmetry. We want to know what the impact
of differences in costs is on market prices, and more generally on
the ability of firms to coordinate. Our results do not confirm the gen-
eral view. Indeed, we find no evidence of symmetric markets being
more collusive than asymmetric markets. With regards to some of
our collusion measures, we even find that differences in costs actually
help firms coordinate and come closer to cartel profits.

We are aware of only two other papers experimentally implementing
Bertrand competition under convex costs. Abbink and Brandts (2008)
study the impact of the number of firms (2, 3, or 4) on (long-run)
outcomes when firms are symmetric. Moreover, one of the markets ana-
lyzed in Fatas et al. (2009) is a symmetric Bertrand duopoly market with
quadratic costs and inelastic demand. To our knowledge, we are the first
to investigate experimentally the effects of cost asymmetry under this
market structure.

The paper is organized as follows. Section 2 describes our experi-
mental design as well as the theoretical predictions. We report the
experimental results in Section 3. Section 4 discusses the findings
and concludes.
8 This is not an issue under constant returns to scale. By contrast, under convex costs
firms might find it suboptimal to produce large quantities.

9 For instance, for five years after the privatization of the energy market in the UK in
April 1990, the market for electricity generation was basically a duopoly consisting of
the firms National Power and PowerGen (Wolfram, 1998).
10 Dixon (1990) shows that the combination of price competition with explicitly
modelled costs of turning customers away delivers a range of Nash equilibrium prices.
Thus, Dastidar's (1995) model can be seen as a reduced-form version of a more com-
plicated game.



Table 1
Design details and static Nash equilibria.

Treatment name “SYM” “ASYM-L” “ASYM-H”

Cost parameters c1=c2=0.6 c1=0.55, c2=0.65 c1=0.5, c2=0.7
Set of Nash equilibria {21, 22, …, 39} {22, 23, …, 38} {23, 24, …, 36}
Number of subjects 19×2=38 23×2=46 21×2=42
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2. Experimental design and theoretical predictions

2.1. Experimental design

Since our main interest lies in the “comparative statics of collusion”
when cost conditions vary, our concern in designing the experiment
was to generate enough collusion in the first place. For this reason, we
focussed attention on duopoly markets. Previous experiments have in-
deed shown that tacit collusion is rarely observed inmarkets withmore
than two firms.11 Subjects in our experimental design repeatedly made
price choices out of the set {10, 11, …, 50}. The design aimed at repro-
ducing the conditions of the model of Bertrand pricing under convex
costs, inwhich automated buyers buy from thefirm(s) offering the low-
est price while sellers behave strategically. The experiment was de-
scribed to the participants as a pricing game between firms but they
were not given the details of the model. Instead, they were presented
with payoff table(s). The use of payoff tables is common practice and
can be traced back to as early as Fouraker and Siegel (1963).

Subjects were paired in one of three treatments, which varied with
respect to the cost structure, and thus payoffs. In the treatment we
call “SYM” the profit tables of the two paired subjects were identical.
In treatments “ASYM-L” and “ASYM-H” they were different. L (H)
stands for a low (high) degree of asymmetry regarding firms' costs.

More precisely, the payoff tables were generated from a linear de-
mand curve (D(p)=100−1.5p) and quadratic cost curves (C(q)
=ciq

2), with all numbers rounded to integer values. The subject post-
ing the lowest price was assumed to serve all the demand addressed
to him or her at this price. In case both subjects chose the same price,
demand was split equally. In the symmetric treatment, cost functions
were identical with c1=c2=c0=0.6. In the asymmetric treatment
“ASYM-L”, one of the two subjects was endowed with a low‐cost pa-
rameter (c1=0.55) while the other was endowed with a high‐cost
parameter (c2=0.65). In the asymmetric treatment “ASYM-H”, the
low‐cost parameters was c1=0.5 and the high‐cost parameter was
c2=0.7. This “symmetric-spread” design was chosen because, condi-
tional on both firms charging the same price, total costs, joint profits
and thus total welfare are the same in all treatments, which facilitates
comparisons. In particular, the joint profit-maximizing (cartel) price
is the same across symmetric and asymmetric treatments.

The experiment consisted of 40 decision rounds. Subjects were ran-
domly matched with an anonymous counterpart at the start of the ex-
periment and interacted with him or her in all 40 rounds.12 Subjects
were made aware of this feature in the instructions. In each round,
each subject had to make only one decision, namely to set the price at
which he or she was willing to sell the fictitious product of the firm he
or she represented. After each round, each subject was presented with
a summary screen displaying the price chosen by this subject, the
price chosen by his or her rival as well as his own payoff. The rival's
11 This is a general conclusion drawn by Haan et al. (2009) or Engel (2007). See
Abbink and Brandts (2008) for Bertrand competition under convex costs. For the case
of Cournot markets, see Huck et al. (2004).
12 It is known that collusion is not to be expected under random matching. See, for
instance, Kübler and Müller (2002) in the case of Bertrand competition with differen-
tiated products.
payoff was not displayed (although it could have been recovered from
the payoff tables) in order not to foster imitation.13

In all treatments, payoffs were expressed in a fictitious monetary
unit (“points”). Subjects were told that negative numbers stood for
losses, which were indeed possible in the range of low prices. They
started the experiment with an initial capital of 5000 points to
cover possible losses. At the end of the experiment, their monetary
earnings were determined by the sum of this capital and the profits
(or losses) in all rounds.14 One Euro was exchanged for every 1800
points accumulated. Each treatment lasted between 30 and 45 min.
The average monetary earnings across all treatments were €12.96.

All subjects were electronically recruited from the pool of partici-
pants registered with Tilburg University's CentERlab. At the time of
the experiment, all were students enrolled in various programs of
the university. They reported to the experimental laboratory, where
they were assigned to a computer workstation and given a set of in-
structions and payoff table(s).15 Instructions were read, questions
were taken and answered, after which the experiment started. Each
participant took part in only one session. We analyze data from
8 lab sessions (3 for SYM, 3 for ASYM-L, 2 for ASYM-H). We have
data on 19 pairs in treatment SYM, 23 pairs in treatment ASYM-L,
and 21 pairs in treatment ASYM-H. Table 1 summarizes the design.

2.2. Theoretical predictions

Bertrand competition is not synonymous with perfect competition
when firms face convex costs. In the symmetric case there is a whole
interval of pure-strategy Nash equilibrium prices. The lower bound of
this interval is determined by average-cost pricing. The upper bound
is determined by the incentive to marginally undercut competitors.
The interval contains the competitive price (which involves
marginal-cost pricing). It may contain the price that maximizes
joint profits or not, but in the linear-quadratic specification we imple-
ment, it doesn't. In the asymmetric case, a pure-strategy Nash equilib-
rium always exists. It may be unique or not, symmetric or not. In the
linear-quadratic specification we implement, it is still the case that
there is a continuum of symmetric equilibria. All general claims are
proved by Dastidar (1995).16

We illustrate the intuition with Fig. 1. For the parameters of our
symmetric treatment, it displays monopoly profits as a function of
price (solid curve) as well as duopoly profits when firms charge the
same price (dashed curve). Because of convexity in costs, industry
profits are higher when production is split between two firms
which then face lower marginal costs (compare monopoly profits
with twice the duopoly profits). In the absence of fixed costs, a
Nash equilibrium must be such that duopolists make nonnegative
profits at the equilibrium price. Hence, only prices that lie to the
right of the left-most vertical line are admissible. Incentives must
also be such that one of the players does not want to undercut the
other so as to reap higher monopoly profits. Hence, only prices that
lie to the left of the right-most vertical line are admissible. Therefore,
there is a whole interval of equilibrium prices between the two verti-
cal lines. Note that the price that maximizes duopoly profits lies out-
side that interval.

Table 2 reproduces the payoff table we used in the symmetric
treatment. As can be checked, all prices in {21, 22,…, 39} are Bertrand
equilibria. The lowest Nash equilibrium price, 21, involves an
13 Several papers have shown that imitation leads to competitive behavior in many
market games and that the observation of rivals' payoffs is conducive to such imitation.
See, e.g., Altavilla et al. (2006), Apesteguia et al. (2007), Huck et al. (1999), or Offerman
et al. (2002).
14 As expected, no participant depleted his or her entire capital at any point during
the experiment.
15 The instructions can be found in the Appendix A.
16 See also Weibull (2006). There are also continua of nonzero-profit mixed-strategy
equilibria, as demonstrated by Hoernig (2002).
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Fig. 1. Monopoly (solid curve) and duopoly profits (dashed curve) as a function of the
(common) price.

Table 2
Payoff table for symmetric treatments.

Your price Your profit when
you have the
lowest price

Your profit when
you are tied for
the lowest price

Your profit when
you don't have
the lowest price

10 −3485 −659 0
11 −3265 −587 0
12 −3050 −517 0
13 −2842 −449 0
14 −2639 −383 0
15 −2441 −320 0
16 −2250 −258 0
17 −2064 −199 0
18 −1883 −142 0
19 −1709 −88 0
20 −1540 −35 0
21a −1377 15 0
22a −1219 64 0
23a −1068 110 0
24a −922 154 0
25a −781 195 0
26a −647 235 0
27a −518 272 0
28a −394 307 0
29a −277 340 0
30a −165 371 0
31a −59 400 0
32a 42 426 0
33a 136 451 0
34a 225 473 0
35a 309 493 0
36a 386 511 0
37a 458 526 0
38a 525 540 0
39a 585 551 0
40 640 560 0
41 689 567 0
42 733 572 0
43 770 574 0

802 575 0
45 829 573 0
46 849 569 0
47 864 563 0
48 874 554 0
49 877 544 0
50 875 531 0

a Static Nash equilibrium, .
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equilibrium profit of 15 but a loss of 1377 in case of miscoordination.
By contrast, the payoff-dominant equilibrium price, 39, involves an
equilibrium profit of 551 and a gain of 585 in case of miscoordination.
The lowest Bertrand equilibrium price involving no loss in case of
miscoordination is 32.17 The monopoly price is 49 but, due to de-
creasing returns to scale, the price maximizing joint profits (and
thus an obvious candidate for tacit collusion) is 44.

In case of cost asymmetry, there is an equivalent to Fig. 1 for each
firm. The highest Bertrand price is determined by the incentives for
the lower-cost firm to undercut (because this firms is comparatively
better at undercutting and producing large quantities). Conversely,
the lowest Bertrand price is determined by the zero-profit condition
for the higher-cost firm (because as price decreases, the profit of
that firm turns negative first). In our first asymmetric treatment
ASYM-L, the range of Bertrand equilibria ran from 22 to 38. The low-
est equilibrium price involving no loss to either firm in case of mis-
coordination was 33. In our asymmetric treatment ASYM-H, the
range of Bertrand equilibria ran from 23 to 36. The lowest equilibrium
price involving no loss to either firm in case of miscoordination was
35. Table 1 summarizes those Nash predictions.

Several features are of interest. First, the lowest equilibrium is de-
termined by a zero-profit condition. Because costs are convex, this
means that a player who posts the corresponding price runs the risk
of making a loss if it happens that the other player chooses a higher
price. This is in fact true for a number of Bertrand equilibrium prices
at the bottom. Because of cost convexity, the potential losses from
miscoordination keep on increasing with the size of demand so that
low Bertrand prices are in this sense riskier.

Second, from the point of view of firms, Nash equilibria are Pareto-
ranked: the higher the equilibrium price, the higher the equilibrium
profits. (The ordering is of course reversed when one considers con-
sumer surplus.)

Third, the price which maximizes players' joint profits lies outside
the interval of Nash equilibria, so that there is room for collusion in a
repeated-game environment. In all treatments, the price that maxi-
mizes joint profits is 44 but because of cost differences, firms' inter-
ests are no longer perfectly aligned in asymmetric treatments.
Conditional on both firms charging the same price, the profit to the
low-cost firm is maximized at a price of 43, while the profit to the
high-cost firm is maximized at a price of 45 in treatment ASYM-L.
The numbers are 42 and 45, respectively, in treatment ASYM-H.
17 This is the equivalent in our specification of the “near-magic” number 24 in Abbink
and Brandts (2008).
There is no unequivocal theoretical prediction for the outcome of
play in such games. Shared expectations and common knowledge of
rationality can give rise to the play of any Nash equilibrium in a
one-shot context. Payoff dominance calls for the highest Nash equi-
librium price to be played. Models of imitation (Abbink and Brandts,
2008 or Alós-Ferrer et al., 2000) predict convergence towards the
competitive equilibrium under some conditions. We did not include
the profit to the other firm in the feedback information received by
participants. So, we did not expect them to follow that line of
reasoning.

In any case, in our experimental setting the stage game was in fact
repeatedly played by the same players. Given the multiplicity of static
Nash equilibria, tacit collusion on higher prices can theoretically arise,
even under a finite horizon, as is well-known from Benoît and Krishna
(1985). There are of course a multiplicity of subgame-perfect
equilibria.

Nonetheless, we now explain how the general view regarding cost
asymmetry applies to our setting. To simplify the exposition, we
make as if the action space of each firm were a continuum [0, a]
(where a is the price at which the demand curve intersects the verti-
cal axis), and as if the interaction were perceived as infinitely
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repeated under discount rates δib1.18 In what follows, firm 0 will
stand for the representative symmetric cost firm. Firm 1 will have a
lower‐cost parameter, while firm 2 will have a higher‐cost parameter.
That is, c1bc0bc2. Symmetric treatments involve two type 0 firms,
while asymmetric treatments oppose a type 1 firm to a type 2 firm.
Notationwise, let π nð Þ

i pð Þ≡p D pð Þ
n −Ci

D pð Þ
n

� �
stand for the one-period

profit accruing to firm i∈{0, 1, 2} when n firms charge the same
price p (and any other firm charges a higher price). Thus, πi(1) is
firm i's monopoly profit while πi(2) is her profit when the two firms
share the market.

Suppose that firm 1's cost-advantage is not too drastic, so that any
price p∈ _p; €p½ � is a Nash equilibrium of the stage game under asymme-
try, where _p is defined by π 2ð Þ

2
_pð Þ ¼ 0 and €p is defined by

π 2ð Þ
1

€pð Þ ¼ π 1ð Þ
1

€pð Þ. It is easy to show that for either firm 1 or firm 2,
the minmax payoff in the stage game is 0. (If the price charged by i
is high enough, then j will either charge the same price or undercut,
and thus make positive profits. If the price charged by i is instead
low, then j will charge any higher price, avoid making any sale, and
earn zero profit.) For the construction of subgame-perfect equilibria,
a crucial question is: can firms be “minmaxed” as part of a punish-
ment equilibrium? The answer is straightforward for firm 2. Follow-
ing any deviation by the latter, we can prescribe firms to play _p
forever, which by definition of _p guarantees her zero profit and con-
stitutes a subgame-perfect equilibrium path. For firm 1, things are
slightly more complicated. Consider the following punishment strat-
egies. In the period immediately following a deviation by firm 1,
that firm prices at ~p defined by

π 1ð Þ
1 ~pð Þ ¼ − δ

1−δ
π 2ð Þ
1 _pð Þ;

while firm 2 charges any strictly higher price. In all remaining pe-
riods, both firms charge _p. That is, firm 1 is forced to make a loss in
the first period by serving the whole market at a low price. That
loss is then exactly recovered in all subsequent periods. (As firm 1
18 Note that in the experimental economics literature it is known that play in finitely
repeated interactions might be more cooperative even if the stage-game equilibrium is
unique (see, e.g., Selten and Stoecker, 1986, or Andreoni and Miller, 1993). This result
is not inconsistent with the idea that subjects in finitely repeated games behave as if
they perceived the time horizon as indefinite.
has lower costs than firm 2, π 2ð Þ
1

_pð Þ > 0.)19 In the punishment phase,
any unilateral deviation is prescribed to lead to the (new) start of
the (relevant) punishment. One therefore sees that both firms can
be brought down to zero profits as part of a subgame-perfect punish-
ment phase. Hence, cost asymmetry does not necessarily weaken re-
taliation possibilities if firms use optimal punishments, a point
stressed by Miklós-Thal (2011). However, the deviation incentives
(the extra payoff a firm makes in the period where she deviates and
undercuts the other firm) are always more than proportionally higher
for firm 1, because of cost convexity. That is,

π 1ð Þ
1 pð Þ=π 2ð Þ

1 pð Þ > π 1ð Þ
0 pð Þ=π 2ð Þ

0 pð Þ > π 1ð Þ
2 pð Þ=π 2ð Þ

2 pð Þ:

Given the availability of minmax punishments, the condition for a
price p to be sustained in equilibrium can then be written as:

1
1−δi

π 2ð Þ
i pð Þ≥π 1ð Þ

i pð Þ þ δi⋅0:

The left-hand side stands for the discounted payoff along the equi-
librium path while the right-hand side stands for the discounted sum
of the deviation payoff and the punishment payoff. The conclusion
that δ1>δ0>δ2 then immediately follows. Hence, the minimum dis-
count rate required for the maintenance of collusion is higher in
asymmetric treatments (δ1) than in symmetric treatments (δ0).

Therefore, on the basis of the existing literature on collusion and the
general view about the role of cost asymmetry, as applied to our
Bertrand supergame with convex costs, we expect that players in sym-
metric markets will be able to coordinate more easily on prices that are
closer to the collusive level than players in asymmetric markets. In the
next section we will define and analyze various measures of collusion.
These measures will have the same property as market prices, namely,
that higher values correspond to higher levels of collusion. Hence, the
main hypothesis whichwe formulate and test in this study can be sum-
marized (somewhat vaguely, at this stage) as follows:
19 If firm 1's cost advantage is strong, a price ~p so defined may not exist but it is easy
to go for punishments with a ‘stick’ phase of more than one period: find ~p and T∈N�

such that π 1ð Þ
1

~pð Þ þ δπ 1ð Þ
1

~pð Þ þ…δT−1π 1ð Þ
1

~pð Þ ¼ − δT
1−δ π

2ð Þ
1

_pð Þ; which is always possible.



Table 3
Collusion and coordination measures and test results. (Data from all markets.).

Collusion and coordination measures

Market price Supra Nash Price Counta Supra Price Nash Indexb Collusion Indexc Price Coordination Countd

SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H

Rounds 37.3 40.0 39.2 6.0 11.4 11.5 −0.042 0.052 0.090 −9.200 0.416 0.719 7.8 11.2 10.4
1–17 (0.84) (0.65) (0.66) (1.38) (1.28) (1.25) (0.02) (0.02) (0.02) (1.26) (0.05) (0.05) (1.28) (0.92) (1.06)
Rounds 39.0 41.2 39.5 9.3 15.6 12.6 0.0008 0.085 0.097 −3.392 0.428 0.874 16.5 17.9 17.8
18–37 (1.07) (0.63) (0.76) (2.13) (1.65) (2.01) (0.03) (0.02) (0.02) (1.14) (0.06) (0.04) (1.33) (0.94) (1.07)
Rounds 38.3 40.6 39.4 15.3 27.0 24.1 −0.0190 0.070 0.094 −6.061 0.432 0.803 24.3 29.1 28.1
1–37 (0.88) (0.59) (0.70) (3.22) (2.74) (3.12) (0.02) (0.02) (0.02) (1.06) (0.04) (0.04) (2.22) (1.75) (1.98)

Results (p-values) of 2-tailed Nonparametric Tests (Mann–Whitney U)
Sym Asym-L Sym Asym-L Sym Asym-L Sym Asym-L Sym Asym-L

Rounds Asym-L 0.0487 – Asym-L 0.0153 – Asym-L 0.0071 – Asym-L 0.0000 – Asym-L 0.0797 –

1–17 Asym-H 0.0695 0.3178 Asym-H 0.0110 0.9622 Asym-H 0.0001 0.2544 Asym-H 0.0000 0.0002 Asym-H 0.1613 0.6789
Rounds Asym-L 0.3506 – Asym-L 0.0258 – Asym-L 0.0015 – Asym-L 0.3342 – Asym-L 0.3924 –

18–37 Asym-H 1.0000 0.0631 Asym-H 0.1918 0.3525 Asym-H 0.0080 0.5946 Asym-H 0.0058 0.0009 Asym-H 0.3818 0.8957
Rounds Asym-L 0.0748 – Asym-L 0.0190 – Asym-L 0.0035 – Asym-L 0.0002 – Asym-L 0.1595 –

1_37 Asym-H 0.3501 0.1266 Asym-H 0.0627 0.8130 Asym-H 0.0021 0.5181 Asym-H 0.0000 0.0000 Asym-H 0.2322 0.7590

Notes: Averages of individual market averages are reported in the upper part of this table with standard errors of the mean in parentheses.
a “Supra Nash Price Count” denotes the number of market prices that are larger than the highest Nash price.
b “Supra Price Nash Index” is defined as (p-NEH)/NEH, where p denotes the market price and “NEH” denotes the highest Nash price, which is equal to 39 in SymC, 38 in Asym-L,

and 36 in Asym-H, respectively.
c “Collusion Index” is defined as (πObserved−πHighestNash)/(πCartel−πHighestNash).
d “Price Coordination Count” denotes the number of cases in which the two firms of a market chose the same price.

22 Abbink and Brandts (2008) report that in their symmetric duopoly markets the
lowest price in the range of Nash equilibria which involves no loss in case of mis-
coordination (24 in their markets, 32 in our treatment SYM) had special attraction for
players. This is also the case in our symmetric markets. However, in our asymmetric
duopoly markets, the corresponding price of 33 (ASYM-L) and 35 (ASYM-H) is only chosen
in relatively few cases, suggesting that the focality of this price seems to be the product
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Hypothesis. The higher the level of cost asymmetry, the lower the
measure of collusion.

3. Experimental results

We now turn to the experimental evidence regarding the ability of
firms to collude under various cost conditions.20 Different measures
of “success” in reaching terms of coordination can be thought of. In
this section, we will first comment on the general pattern of play in
the various treatments. We will then analyze market prices in some
detail. However, as the set of Nash equilibria is not the same in all
treatments, the comparison of absolute prices can be criticized. That
is why we subsequently introduce and discuss various other mea-
sures of collusion. Those are the frequency of prices in excess of the
highest Nash equilibrium price (“Supra Nash Price Count”), the (nor-
malized) deviation from the highest Nash equilibrium price (“Supra
Nash Price Index”), and the extent to which firms improve on the
highest Nash equilibrium profits and come closer to the highest
joint profits (“Collusion Index”). Measures of the ability of subjects
to choose one and the same price are useful in interpreting the re-
sults. We consider the eventual stabilization of play on a single
price (“Convergence”) along with the frequency with which subjects
manage to charge the same price (“Price Coordination Count”).

Let us first comment on the general pattern of play. Fig. 2 shows
histograms of market prices in rounds 1–37 for all three treatments.
21 In all treatments, pricing above the highest Nash equilibrium was
quite common. In treatment SYM, the distribution is double-peaked,
with the mode at the perfectly collusive price of 44 and the second
most often chosen price being 32 (which is the lowest price in the
range of Nash equilibria which involves no loss in case of mis-
coordination). In contrast, the distribution in treatment ASYM-L is
single-peaked at 43, which is the price that maximizes the profit of
the low-cost firm (conditional on both firms charging the same
price). Finally, the distribution of market prices in treatment ASYM-
20 We also ran a few sessions for treatments with incomplete information about the
existence of a cost asymmetry. Results were reported in Argenton and Müller (2009).
21 Due to a clear endgame effect we excluded the last three rounds. In order to ac-
count for players' learning, we divided the remaining periods in two, referring to
rounds 1–17 as the first half and to rounds 18–37 as the second half.
H appears to be more evenly distributed in comparison to the other
treatments. Thus, the comparison between the symmetric and the
asymmetric treatments (especially treatment ASYM-L) does not sug-
gest that symmetry helps players choose higher prices.22

We now turn to our various measures of collusion. Averages (of in-
dividual market averages) for those measures are presented in the
upper part of Table 3, separately for various time horizons. The lower
part of this table displays the results of Mann–Whitney U tests for
pair‐wise treatment comparisons, again separately for various time ho-
rizons. The unit of observation for those tests is the average for each in-
dividual market.
3.1. Market prices

The market price is defined as the minimum of the prices posted
by the two firms in a market. This is the price at which consumers
would obtain the good in a market characterized by Bertrand compe-
tition. Contrary to our Hypothesis, we observe in Table 3 that market
prices are highest on average (and less dispersed) in treatment
ASYM-L, followed by prices in treatment ASYM-H and then treatment
SYM.23

The evolution of the average market price in all treatments is
shown in Fig. 3. Inspecting this figure, we make a number of observa-
tions. First, in treatment SYM, the average price in period 1 is about
34, then increases sharply during the first three periods and more
slowly in the periods that follow. The average market price then sta-
bilizes at a price slightly above 39 in later periods. Importantly, aver-
age prices in treatment SYM are the lowest of all treatments. Second,
of special circumstances, e.g., symmetry. Note that in a one-shot game, Argenton et al.
(2010) submit that strategic uncertainty makes 32 an attractor of play. Testing this
theory would require eliciting the beliefs that players hold about their rival's actions
in the (early rounds of the) experiment.
23 Statistics regarding individual prices instead of market prices display the same
features.
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Fig. 3. The evolution of market prices over time.
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in treatment ASYM-L the average price in period 1 is slightly higher
than 35 and then shoots up to a level of around 41 during the first 5
periods and then more or less stabilizes at this high level. Average
prices in treatment ASYM-L are the highest of all treatments. Third,
average prices in treatment ASYM-H start at a high level of about 40
in period 1, then almost reach the level of prices in treatment
ASYM-L in the next few rounds, but then converge from above to
the average prices in treatment SYM. Fourth, whereas in the first
half there is a clear gap in average prices between the asymmetric
treatments and the symmetric treatment, in the second half there is
clear gap in averages prices between treatment ASYM-L and the
other two treatments. Fifth, in all treatments we observe a typical
endgame effect with average prices sharply decreasing in the last
two or three periods.24 Thus, the information contained in Fig. 3 is,
again, not suggestive of the validity of our Hypothesis, according to
which symmetry should help players reach higher prices.

For formal test results regarding market prices, we turn to the
lower part of Table 3. For the first half of the experiment we find
that average market prices in the two asymmetric treatments are sig-
nificantly higher than in the symmetric treatment while there is no
difference in average market prices across the two asymmetric treat-
ments. In the second half, however, the differences in market prices
between the two asymmetric and the symmetric treatment cease to
be significant (while the difference between the two asymmetric
treatments becomes significant). In sum, we don't find evidence
that market prices decrease with the level of cost asymmetry.25
24 See Selten and Stoecker (1986) for a classical investigation of this phenomenon.
25 Imposing more structure does not help validate the Hypothesis. Regressions avail-
able from the authors use GLS panel regression techniques, allowing for autocorrela-
tion of the error terms and clustering at the market level, to compare average market
prices across treatments. Market prices in treatment ASYM-L are always significantly
higher than in treatment SYM , while in treatment ASYM-H they are only weakly signifi-
cantly higher than in treatment SYM in the first half of the experiment, which clearly re-
jects our Hypothesis. Furthermore, average prices in the two asymmetric treatments
differ (weakly) only in the second half of the experiment.
3.2. Supra Nash Price Count

As the set of Nash equilibria changes from one treatment to the
other, the comparison of absolute market prices can be criticized for
not capturing subject's ability to depart from Nash play. Our first at-
tempt at addressing this criticism consists in measuring the number
of times market prices happen to be strictly higher than the highest
Nash equilibrium price. With one exception, in Table 3 we observe
that this measure is statistically significantly larger for the two asym-
metric treatments than for the symmetric treatment (while there is
no statistical difference between the two asymmetric treatments).
Thus, we find evidence against our Hypothesis that asymmetry im-
pairs subjects' ability to price above static Nash equilibrium prices.

3.3. Supra Nash Price Index

Another way to avoid problems with comparisons of absolute
market prices consists in normalizing the deviation from Nash prices.
The next measure, which we call the “Supra Nash Price Index”, is de-
fined as (p−NEH)/NEH, where p denotes the market price and NEH

denotes the highest Nash equilibrium price in the one-shot game
(which is equal to 39 in SYM, 38 in ASYM-L, and 36 in ASYM-H, re-
spectively). In comparison to the market prices we analyzed above,
this index effectively controls for the fact that the highest Nash equi-
librium price is different across the three treatments. Clearly, this
index is negative (positive) if the market price is usually lower
(higher) than the highest Nash price. The (absolute value of this)
index measures the difference of the market price and the highest
Nash equilibrium price as a percentage of the highest Nash equilibri-
um price. Inspecting the averages of this index across treatments (see
Table 3), we find that it is negative in treatment SYM during the first
half of the experiment and overall, while it is positive in all other
cases. Furthermore, it is monotonic in the degree of asymmetry. The
test results in the lower part of Table 3 deliver a clear-cut result:
The Supra Nash Price Index is significantly larger in both asymmetric
treatments than in the symmetric treatment, but there is no statistical
difference between the two asymmetric treatments. Hence, with



26 For a detailed analysis of the time it takes for markets to stabilize in the context of
Cournot markets, see Mason et al. (1992) and Mason and Phillips (1997).
27 As pointed out by a referee, this statistic is not a good measure of collusion in mar-
kets which, unlike ours, are characterized by constant returns to scale. For instance,
players taking turns in capturing the entire market at the monopoly price is highly col-
lusive but would deliver a price coordination count of zero.
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respect to this index, we find that asymmetry helps subjects deviate
from Nash-pricing but we cannot reject the hypothesis that devia-
tions are of the same order of magnitude in the two asymmetric
treatments.

3.4. Collusion Index

So far, we focussed only on prices or related measures. A typical
measure of collusion consists in measuring the extent to which
firms manage to increase their profits above the (highest) Nash equi-
librium profits and come closer to cartel profits (see, e.g., Holt, 1995).
Therefore, we define the Collusion Index as follows:

Collusion Index ¼ πObserved−πHighestNash

πCartel−πHighestNash
;

where πObserved stands for the joint profits actually achieved,
πHighestNash is the joint profit at the highest Nash equilibrium, and
πCartel stands for the maximum possible joint profits (which are
achieved at a common price of 44 in all treatments). The Collusion
Index is equal to 1 at the maximal joint profit, and equal to 0 if both
sellers choose the highest Nash equilibrium price. Averages of the
Collusion Index and related test results are again presented in
Table 3. The Collusion Index turns out to be consistently negative
across all time horizons in treatment SYM, indicating that subjects
do not fare better than under Nash play on average. By contrast, the
index is positive in the two asymmetric treatments, independently
of the time horizon. Moreover, the Collusion Index is monotonic in
the degree of asymmetry. Test results indicate that pair-wise across-
treatment differences are (with one exception) statistically signifi-
cantly different. Hence, there is evidence against our Hypothesis
that symmetry helps subjects achieve higher levels of collusion.

3.5. Convergence

The fact the asymmetry seems to be conducive to higher profits is
potentially the result of two different effects. On the one hand, be-
cause of cost convexity, having both firms charge one and the same
price increases profits as compared to the situation where only one
firm serves all demand at the market price. On the other hand, condi-
tional on charging the same price, firms have an interest in getting as
close as possible to the cartel price of 44. The evidence on market
prices does not suggest that they decrease with the level of cost
asymmetry. Therefore, the significant differences in the values of
the Collusion Index must be explained by a higher ability of subjects
to coordinate on the same price, independently of its level. To first
look at this issue, we investigate whether subjects in a typical market
manage eventually to “agree” on charging the same price, in which
case we say that this market “converges”, and the time it takes in
case they do. For this purpose, we classify a market as having con-
verged if both firms charge one and the same price in periods 31–
37, where we allow for one exception in which one firm charges a
price one unit higher or lower. Although somewhat arbitrary, this
definition aims at capturing the idea that players have eventually
reached a common understanding, without excluding the possibility
of one (failed) attempt at switching to another price. We find that
markets typically converge. In fact, the percentage of markets con-
verging in treatments SYM is 73.3% (14 out of 19 markets) whereas
this number is 78.3% (18 out of 23 markets) in treatment ASYM-L
and 85.7% (18 out of 21) in treatment ASYM-H. Hence, the percentage
of converging markets is lowest in the treatment with symmetric
firms. Two-tailed χ2 tests indicate, however, that only the difference
between treatments SYM and ASYM-H is statistically significant
(p=0.030). Furthermore, conditional on convergence, the period of
convergence is defined as the beginning of the time interval during
which both firms uninterruptedly posted the price they converged
to. The average period in which markets converge in treatments
SYM, ASYM-L, and ASYM-H is, respectively, 11.9, 6.8, and 9.4. The re-
sults of two-tailed Mann–Whitney U tests of pair-wise across-
treatment differences in the period of convergence (where each mar-
ket counts as an independent observation) indicate that markets in
treatment ASYM-L converge significantly earlier than markets in
treatment SYM (p=0.0864, two-tailed Mann–Whitney U test), all
other differences are insignificant.26 Thus, there is some evidence
that convergence is more easily achieved in asymmetric treatments.

3.6. Price Coordination Count

Another way to look into the issue of coordination is to ask how
often firms manage to charge one and the same price, independently
of any convergence.27 For this purpose, we consider the average num-
ber of periods in which the two firms in a market chose the same
price. Indeed, symmetry could help firms along that dimension as
well. We thus briefly analyze the effect of symmetry on the ability
of firms to post the same price (see Table 3). Overall, we find that, if
anything, it is again asymmetry that helps subjects coordinate on
the same price, especially in the early periods of the experiment.
For instance, let us consider the incidence of same price choices in
the first half of the experiment. We find that firms manage to choose
the same price in 45.9% (on average 7.8 out of 17 rounds in treatment
SYM), 65.9% (on average in 11.2 out of 17 cases in treatment ASYM-L),
and 61.2% (on average 10.4 out of 17 periods in treatment ASYM-H) of
the cases. The corresponding test results in the lower part of Table 3 indi-
cate that the difference between treatment SYM and ASYM-L is signifi-
cant. Note, however, that during the second half of the experiment the
statistical differences in this measure across treatments disappear.
Hence, there is no evidence that symmetric markets are more conducive
to coordination.

3.7. Robustness check

The important result derived so far is that symmetry does not help
firms coordinate on higher prices and achieve higher profits. Howev-
er, the analysis up to now is based on the data for all markets, inde-
pendently of whether or not they finally converged on a common
price. To check the robustness of the absence of evidence in favor of
our Hypothesis that symmetry is conducive to achieving higher prices
and profits, we repeat the analysis presented in Table 3 by taking into
account only those markets that eventually converged. The results of
the analysis with data from converged markets only are presented in
Table 4. The results are clear-cut. Although the positive effect of cost
asymmetry on market prices is usually not statistically significant,
we again find no evidence in favor of the claim that symmetry helps
achieving more collusion than asymmetry. Again, if anything, asym-
metry helps firms achieve higher levels of collusion (according to
the measures “Supra Nash Price Count”, “Supra Nash Price Index”
and the “Collusion Index” in Table 4).

4. Conclusion

One of the classical questions in antitrust is whether symmetric or
asymmetric market structures should be favored (as part of, e.g.,
merger control when coordinated effects are assessed) or monitored
(e.g., when deciding which sectors to target for cartel detection)?
Textbooks and policy guidelines, informed by some theoretical



Table 4
Collusion and coordination measures and test results. (Data from converged markets only.).

Collusion and Coordination Measures

Market Price Supra Nash Price Counta Supra Nash Price Indexb Collusion Indexc Price Coordination Countd

SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H SymC Asym-L Asym-H

Rounds 37.8 40.2 39.3 6.7 11.9 11.4 −0.030 0.057 0.091 −7.828 0.411 0.745 9.2 12.8 11.0
1–17 (1.05) (0.78) (0.75) (1.71) (1.47) (1.42) (0.03) (0.02) (0.02) (1.50) (0.06) (0.04) (1.56) (0.62) (1.03)
Rounds 39.9 41.8 39.8 11.0 16.8 13.1 0.022 0.101 0.104 −1.022 0.437 0.913 19.6 19.8 19.1
18–37 (1.35) (0.64) (0.82) (2.68) (1.75) (2.22) (0.03) (0.02) (0.02) (0.69) (0.10) (0.03) (0.29) (0.17) (0.63)
Rounds 38.9 41.1 39.5 17.7 28.7 24.5 −0.002 0.081 0.098 −4.150 0.426 0.836 28.8 32.6 30.2
1–37 (1.09) (0.66) (0.77) (3.98) (3.08) (3.49) (0.03) (0.02) (0.02) (0.91) (0.06) (0.03) (1.72) (0.74) (1.53)

Results (p-values) of 2-tailed Nonparametric Tests (Mann Whitney U)
Sym Asym-L Sym Asym-L Sym Asym-L Sym Asym-L Sym Asym-L

Rounds Asym-L 0.2030 – Asym-L 0.0639 – Asym-L 0.0440 – Asym-L 0.0000 – Asym-L 0.1745 –

1–17 Asym-H 0.2313 0.3188 Asym-H 0.0860 0.6896 Asym-H 0.0018 0.3756 Asym-H 0.0000 0.0003 Asym-H 0.4334 0.990
Rounds Asym-L 0.8913 – Asym-L 0.0420 – Asym-L 0.0013 – Asym-L 1.0000 – Asym-L 0.4342 –

18–37 Asym-H 0.5521 0.0370 Asym-H 0.3932 0.1534 Asym-H 0.0663 0.8728 Asym-H 0.0608 0.0311 Asym-H 0.8452 0.5806
Rounds Asym-L 0.2388 – Asym-L 0.0538 – Asym-L 0.0226 – Asym-L 0.0044 – Asym-L 0.2142 –

1–37 Asym-H 0.7040 0.0905 Asym-H 0.2013 0.5439 Asym-H 0.0226 0.7042 Asym-H 0.0000 0.0000 Asym-H 0.5669 0.3721

Notes: Averages of individual market averages are reported in the upper part of this table with standard errors of the mean in parentheses.
a “Supra Nash Price Count” denotes the number of market prices that are larger than the highest Nash price.
b “Supra Price Nash Index” is defined as (p-NEH)/NEH, where p denotes the market price and “NEH” denotes the highest Nash price, which is equal to 39 in SymC, 38 in Asym-L,

and 36 in Asym-H, respectively.
c “Collusion Index” is defined as (πObserved−πHighestNash)/(πCartel−πHighestNash).
d “Price Coordination Count” denotes the number of cases in which the two firms of a market chose the same price.
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literature and the available experimental studies, suggest that asym-
metry is to be favored, as symmetry among firms is thought to be
conducive to collusive outcomes. We test this perception in a series
of experimental repeated Bertrand duopolies where firms have con-
vex costs. We implement symmetric as well as asymmetric markets
that vary in their degree of cost asymmetry among firms. For our
lab markets, we never find evidence of symmetric markets being
more collusive than asymmetric markets. In fact, for some measures
of collusion, we have the opposite result. Firms in our asymmetric
treatments come closer to the cartel profits not so much because of
clearly higher prices but because they appear to be able to coordinate
more often, and to converge earlier, on the same price. This suggests
that asymmetric cost conditions may have stabilizing properties in
markets with convex costs, where the incentives to split production
are high and require firms to charge the same price.

Although the evidence is not overwhelming, we feel that some re-
marks are in order on this topic. In particular, what could explain earlier
convergence in treatment ASYM-L as compared to treatment SYM? We
venture that “leadership” may explain this pattern. First, in the asym-
metric treatments, players know that one of the two firms has got an ad-
vantage, which may influence the ability of this firm to “propose prices”
in the adjustment process leading to stabilization. In support of this hy-
pothesis, we first note that in treatment ASYM-L, a very high fraction of
the posted prices happen to be 43, which is the price maximizing the
profits of the low-cost firm, rather than 44 or 45. Second, in treatment
ASYM-Lwe observe that the pattern of reactions tomiscoordination sys-
tematically favors the low-cost firm, in the sense that it is the high-cost
firm that more often adjusts its price in response to a gap in the posted
prices. We elaborate on the latter observation and present relevant fig-
ures in the Online Appendix. However, for reasons that are not entirely
clear to us, in treatment ASYM-Hwe do not find a clear “leadership” ten-
dency of low-cost firms. Instead, in this treatmentwefind that (especial-
ly high-cost) firms have a somewhat higher tendency of not changing
their prices from one period to the next in comparison to firms in treat-
ment SYM. This could explain why markets in treatment ASYM-H con-
verge somewhat earlier than those in treatment SYM. On the other
hand, a higher extent of more stable play of high-cost firms in treatment
ASYM-H in comparison to high-cost firms in treatment ASYM-L also
means that high-cost firms in ASYM-H make fewer attempts to pull
prices upward. This could be one explanation for why prices in
treatmentASYM-Hdo not stay as high as they are in thefirst fewperiods
of the experiment. Again, we provide more details in the Online Appen-
dix but acknowledge that more research is to be conducted to account
for such puzzling differences.

In future work, we plan on testing the possibly stronger stabilizing
properties of asymmetric markets by periodically shocking markets
and studying oligopolists' adaptation to changing conditions. In gen-
eral, we think that the properties of Bertrand markets with convex
costs and the results presented here and elsewhere warrant further
(experimental) study.

Appendix A Instructions

We here display the instructions for treatment SYM. The changes in
the instructions for asymmetric treatments ASYM-L and ASYM-H are
displayed between brackets after the corresponding passages in the in-
structions for SYM.

INSTRUCTIONS
Welcome to this experiment!
Please read these instructions carefully! Do not speak to your

neighbours and keep quiet during the entire experiment! If you have
a question, please raise your hand. We will then come to your seat.

In this experiment you will repeatedly make decisions. By doing so
you can earn money. How much you earn depends on your decisions
and on the decisions of another participant in the experiment. All par-
ticipants receive the same instructions.

YOUR TASK IN THE EXPERIMENT
In this experiment, you represent a firm which, along with one

other firm, produces and sells a fictitious product in a market. In
each of the 40 rounds of this experiment, you and the other firm
will always have to make one decision, namely, to set the price at
which you are willing to sell the fictitious product. Prices can be cho-
sen from the set {10, 11, 12, …, 50}. That is, all integer numbers from
10 to 50 are possible choices.

YOUR PROFIT
The profits are denoted in a fictitious unit of money which we call

“Points”. Negative numbers stand for losses.
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In the attached table you can see the profits (or losses) that you
will make depending on the prices chosen by yourself and the other
firm in your market. The participant who represents the other firm
in your market has a profit table that is identical to the one you have.

[Attached to the instructions are two tables. In the first table you
can see the profits (or losses) that you will make depending on the
prices chosen by yourself and the other firm in your market. In the
second table you can see the profits (or losses) that the other firm
will make depending on the prices chosen by itself and by yourself.
Notice that the two tables are different.]

Down the first column of the table [of your profit table (Table 1)]
are listed the prices that you may choose in any given round. Columns
2, 3, and 4 show your profit depending on the prices chosen by your-
self and the other firm in your market in the three cases that can be
distinguished.

• If the price that you have chosen is the lowest price of all prices cho-
sen in your market, you will receive the profit shown in Column 2
entitled “Your profit when you have the lowest price.”

• If the price that you have chosen is the same as the price chosen by
the other firm in your market, you will receive the profit shown in
Column3 entitled “Your profitwhen you are tied for the lowest price.”

• If the price that you have chosen is higher than the price of the
other firm in your market, you will receive the profit shown in Col-
umn 4 entitled “Your profit when you don't have the lowest price.”

[The profit table for the other firm in your market (Table 2) can be
read in an analogous manner.]

MATCHING
The experiment consists of 40 decision rounds. In all rounds, you

will interact with the same participant, who will be randomly select-
ed at the beginning of the experiment. The identity of this participant
will never be revealed to you.

FEEDBACK
At the end of each round, you will learn the price chosen by the

other firm in your market and your own profit (or loss).

YOUR MONETARY EARNINGS
You will start the experiment with an initial capital of 5000 Points.
At the end of the experiment, your monetary earnings will be de-

termined by the sum of your initial capital and your profits (or losses)
in all rounds. You will receive 1 Euro for every 1800 Points you have
accumulated.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.ijindorg.2012.05.006.
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