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We conduct a series of Cournot duopoly market experiments with a high number of repetitions 
and fixed matching. Our treatments include markets with (a) complete cost symmetry and 
complete information, (b) slight cost asymmetry and complete information, and (c) varying cost 
asymmetries and incomplete information. For the case of complete cost symmetry and complete 
information, our data confirm the well-known result that duopoly players achieve, on average, 
partial collusion. However, as soon as any level of cost asymmetry or incomplete information is 
introduced, observed average individual quantities are remarkably close to the static Bayes-Nash 
equilibrium predictions.

1. Introduction

This paper is concerned with the experimental occurrence of collusion (low quantities) in Cournot environments. The novelty is 
that we introduce repeated Bayes-Nash Cournot games, where two firms repeatedly, independently, and privately draw their cost in 
each round, and compare them to environments where firms either have the same costs or have different but known costs.

The emergence of (tacit) collusion in oligopolistic environments is of particular interest. For one, collusion in oligopoly typically 
takes the form of a social dilemma (with Nash equilibrium predictions conflicting with the collective interests of the players, as 
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exemplified by the difference between Cournot equilibrium profits and monopoly profits). Cooperation in social dilemmas is the 
subject of an enormous literature across the various social sciences. Second, in many countries, the fight against collusion and cartels 
is at the top of competition authorities’ concerns so that work on the determinants of collusion in oligopolistic markets can directly 
inform public policy.

Cournot competition is a workhorse of industrial organization and it has been extensively studied in the lab. Some of the very first 
studies in experimental economics concerned themselves with behavior in Cournot environments (see Sauerman and Selten, 1959; 
Hoggatt, 1959). Many determinants of collusion in Cournot environments have now been explored: the number of firms (Huck et 
al., 2004); the possibility of pre-play communication (Binger et al., 1990; Waichman et al., 2014; Fischer and Normann, 2019); the 
type of feedback information about play (Huck et al., 2000; Davis, 2002; Offerman et al., 2002; Altavilla et al., 2006); the matching 
protocol (Davis et al., 2003); the frequency or duration of interaction (Normann et al., 2014; Bigoni et al., 2019); the use of complete 
contingent strategies (as opposed to making a choice in every round; see Selten et al., 1997); gender effects (Mason et al., 1991); the 
level of the discount rate (Feinberg and Husted, 1993); or the nature of decision-making (Raab and Schipper, 2009).4

The majority of studies look at symmetric environments, where firms have the same cost functions. Some studies (Fouraker and 
Siegel, 1963; Mason et al., 1992; Mason and Phillips, 1997; Selten et al., 1997; Rassenti et al., 2000; Normann et al., 2014; Fischer 
and Normann, 2019) introduce (fixed) asymmetric costs. Overall, the evidence shows that asymmetry makes it much harder to 
collude in the lab; observed quantities are clearly more competitive than in symmetric configurations and often in line with static 
Nash predictions.

Most of this literature also looks at environments with complete information. Exceptions include Fouraker and Siegel (1963), 
Carlson (1967), and Mason and Phillips (1997), who have conditions in which a given player does not have any information about 
the payoff of the other player(s). Thus, in those studies, the games are not Bayesian, in the technical sense (Harsanyi, 1967) of having 
a prior distribution of types commonly known to all players.5 Not all of those studies compare complete-information to incomplete-

information environments; when they do, they report a tendency for collusion to be harder to achieve in the presence of incomplete 
information.

To our knowledge, no paper so far has looked at a (finitely) repeated standard Bayesian Cournot game with uncertain costs, 
an environment which displays both incomplete information and potential changes in asymmetric cost levels (as cost types are 
drawn anew in every round). In fact, there is a scarcity of articles looking at repeated Bayes-Nash environments in the more general 
literature about experimental oligopolies. We are only aware of a study by Abbink and Brandts (2005), which speaks to the possibility 
of collusion in Bayes-Nash Bertrand oligopolies. In their experiment, Bertrand firms face a known linear demand curve but they 
independently and repeatedly draw their unit cost from a common (uniform) distribution under fixed matching for 50 rounds.

We conduct a series of Cournot laboratory experiments with two players under fixed matching and finite repetition. Our treat-

ments include full symmetry and complete information (with two variants: constant costs over time and random realizations of 
symmetric costs every round), some slight cost asymmetry under complete information, and private information about repeatedly 
drawn costs (the proper Bayes-Nash treatments).

Subjects remain matched to the same partner for 60 rounds and face the same, known linear demand curve. In the Bayes-Nash 
treatments, in every round, costs are drawn to be high or low with equal probability. In a sequence of treatments, we vary the level 
of asymmetry (i.e., the difference between the high and the low cost).

We uncover the following main findings. First, for markets with complete cost symmetry and complete information, our data 
reproduce the known result that duopoly players achieve on average partially collusive outcomes (see, e.g., Huck et al., 2004). This 
also applies to the treatment where firms have the same costs but those are drawn anew every period. Second, we find that as soon 
as any level of asymmetry or incomplete information about current-period costs is introduced, collusion disappears and observed 
average individual quantities are remarkably close to the static Bayes-Nash equilibrium values. We do not observe differences in 
collusion levels among Bayes-Nash treatments based on the size of the cost asymmetry.

We investigate the adjustment process of decision-making by subjects from one round to the next (‘learning’) in the spirit of 
Offerman et al. (2002). Specifically, we introduce a conditional imitation process that consists for a given player in adopting the 
‘exemplary’ choices made by the other player, i.e., choices which, if played in the relevant state, would increase the sum of (expected) 
payoffs for both players (when compared to the choices currently made by the player).6 Simulations show that such an adjustment 
process converges towards collusive outcomes by contrast to standard best-response dynamics that lead to the Cournot (Bayes-Nash) 
outcomes.

We find evidence that in the treatments where either cost asymmetry or incomplete information about current cost conditions 
is present, subjects’ adjustments are more in line with Cournot best-response to the opponent’s previous choice rather than with 
imitation of ‘exemplary’ behavior by this opponent. By contrast, in the symmetric, complete-information treatments, players put less 
weight on playing a best response to their opponent’s last (relevant) round choice and more weight on (conditionally) imitating it, 
and that allows them to find their way towards cooperation by achieving gradual reductions in output.

We conclude that there is something special to the treatment involving two players under symmetry, complete information and 
finite repetition, which leads players to depart more from myopic optimization. In the treatments where there is either asymmetry 

4 For a meta-study on the determinants of collusion in oligopoly experiments, more generally, see Engel (2007).
5 For example, Mason and Phillips (1997) study behavior when players’ payoffs were either common knowledge or private information. In the latter case, players 

were not given any information on the distribution of payoffs of their opponents.
2

6 This process nests the ‘follow-the-exemplary-other-firm’ learning rule of Offerman et al. (2002) as a special case. For details see our section 4.2.
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or incomplete information about current-period costs, we find that the static Bayes-Nash equilibrium values are good predictors. In 
that sense, observed behavior is ‘discontinuous’ as soon as one moves away from complete information and full symmetry about 
current-period conditions.

This finding reinforces the idea that tacit collusion can be achieved in Cournot environments only in very specific circumstances. 
Remarkably (and setting external validity concerns aside for a moment), this seems to align well with the decisional practice of 
competition authorities when ruling on so-called “coordinated effects” (i.e. the possibility of tacit collusion) in merger control. Davis 
et al. (2011) indeed show that the European Commission concerns itself with collusion threats only in the case of post-merger 
symmetric duopolies.

A Bayes-Nash Cournot environment is interesting to study for several reasons. First, that game is canonical and, as such, worthy of 
investigation. Second, under finite repetition, subgame-perfection predicts that players will play the unique, static Bayes-Nash equi-

librium in every round and one would want to know whether that prediction will be borne out. In complete-information duopolies, 
Cournot players typically manage, under sufficiently long repetition, to achieve higher payoffs than predicted by the Cournot equilib-

rium. The previous literature suggests that the presence of (possible) cost asymmetry or incomplete information could complicate the 
task of subjects in our context but it is simply not known to which extent collusion might be impaired and whether that depends on 
the magnitude of the asymmetry. Third, outside the lab firms are likely to have private information about their (changing) cost level. 
Although arguably specific, the Bayesian Cournot environment brings a measure of stochasticity to a literature which has mainly 
focused on very stable (indeed, identically repeated) contexts.

The rest of this paper is structured as follows. In Section 2, we briefly describe the standard theoretical predictions associated 
with our Bayes-Nash environment; in Section 3 we describe our experimental set-up and the various treatments; Section 4 contains 
our findings, the specification of learning dynamics and our analysis of subjects’ adaptive behavior; and in Section 5 we discuss our 
results in the light of related literature.

2. Theory

Consider an incomplete-information Cournot duopoly operating in a market with inverse demand 𝑃 (𝑄) =max{𝑎 − 𝑏𝑄, 0}, where 
𝑄 = 𝑞1 + 𝑞2 is the aggregate quantity in the market. Suppose that firm 𝑖 = 1, 2 has unit costs 𝑐𝐻

𝑖
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where 𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗.

In a Cournot duopoly with complete information about (possibly different) costs 𝑐𝑖 ≥ 0, firms choose the following quantities in 
the Nash equilibrium (just set 𝑐𝐿

𝑘
= 𝑐𝐻

𝑘
= 𝑐 for 𝑘 = 𝑖, 𝑗 in (1) or (2))

𝑞∗
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= 1

3𝑏
(
𝑎− 2𝑐𝑖 + 𝑐𝑗

)
, 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗. (3)

The parameters used in the experiment are provided in column 3 of Table 1 and the Bayes-Nash equilibrium predictions, given 
parameters, are provided in column 3 of Table 2.

Provided the BNE of a stage game is unique, in a finitely-repeated Bayesian game, the only perfect Bayesian equilibrium is to play 
the stage-game BNE in every round of the repeated game.7

While the collusive outcome in a symmetric Cournot duopoly with complete information is clear (each firm produces half the 
monopoly quantity), in a Cournot duopoly with asymmetric costs and complete information players do not necessarily agree on 
the collusive actions: Static joint profit maximization calls for the high-cost firm not to produce at all and for the low-cost firm to 
produce the monopoly quantity. If costs are drawn at random every period and the firms play those strategies for many periods, 
then they might, on average, collect half of the monopoly profit. However, a high-cost firm might be particularly wary that its rival 
might not reciprocate and cut production next time the cost configuration is reversed. If, for this reason, firms insist on producing 
the same quantity every period, then, because of the cost difference, they disagree about the optimal level.8 Finally, in a proper 
Bayesian Cournot game where cost draws are privately observed, cooperation/collusion problems are arguably even more severe. In 
particular, it is no longer optimal, from the point of view of joint profits, to stop production when one draws a high-cost (as there is 
a non-zero probability that both firms draw such costs). We are not aware of a theoretical paper that solves for the optimal collusive 
scheme in this environment.9

7 Note that in a repeated version of the Bayesian Cournot game, types are drawn anew in every period. Thus, there is no role for reputation building of the kind 
first shown by Kreps and Wilson (1982) in the case of fixed types, drawn once and for all at the beginning of the supergame.

8 For more on this, see Schmalensee (1987) for a theoretical, and Fischer and Normann (2019) for a theoretical and experimental investigation of this case.
9 For Bertrand games, the optimal collusive scheme has been characterized by Athey and Bagwell (2001) in the case of inelastic demand. For Cournot games, 

optimal schemes have been characterized only in the case of privately observed costs that are drawn once and for all, see Chakrabarti (2010). Under fixed types, if 
3

communication between firms is allowed, Roberts (1985) has pioneered a mechanism design approach to the problem.
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Table 1

Experimental design.

Treatment Info Parameter Choices #Subjects #Markets #Obs

In all Treatments: 𝑎 = 120 and 𝑏 = 1
30–C C 𝑐1 = 𝑐2 = 30 14 7 840

29-29–31-31–C C 𝜆1 = 𝜆2 = 0.5, 𝑐1 = 𝑐2 = 29, 𝑐1 = 𝑐2 = 31 36 18 2,160
29-31–C C 𝜆1 = 𝜆2 = 0.5, 𝑐𝐻1 = 𝑐𝐻2 = 31, 𝑐𝐿1 = 𝑐𝐿2 = 29 30 15 1,800
29-31–I I 𝜆1 = 𝜆2 = 0.5, 𝑐𝐻1 = 𝑐𝐻2 = 31, 𝑐𝐿1 = 𝑐𝐿2 = 29 28 14 1,680
25-35–I I 𝜆1 = 𝜆2 = 0.5, 𝑐𝐻1 = 𝑐𝐻2 = 35, 𝑐𝐿1 = 𝑐𝐿2 = 25 28 14 1,680
20-40–I I 𝜆1 = 𝜆2 = 0.5, 𝑐𝐻1 = 𝑐𝐻2 = 40, 𝑐𝐿1 = 𝑐𝐿2 = 20 26 13 1,560
20-40–10-50–I I 𝜆1 = 𝜆2 = 0.5, 𝑐𝐻1 = 40, 𝑐𝐿1 = 20, 𝑐𝐻2 = 50, 𝑐𝐿2 = 10 28 14 1,680

Notes: The letter I (C) in the column labeled “Info” indicates that firms have In(Complete) information about each 
other’s costs. The individual equilibrium quantities for each treatment are indicated in Table 2 in the column labeled 
“Quantity in the BNE.”

Table 2

Summary statistics.

Quantity Average Individual Quantity Observed

Treatment Costs in the BNE Rounds 1-30 Rounds 31-60 Rounds 1-60

30–C 𝑐 = 30 30 26.72∗∗

(1.26)

25.72∗

(1.24)

26.22∗∗

(1.09)

29-29–31-31–C 𝑐𝐿1 = 29, 𝑐𝐿2 = 29 30.33 28.18∗∗

(0.76)

28.24∗∗

(0.77)

28.22∗∗

(0.72)

𝑐𝐻1 = 31, 𝑐𝐻2 = 31 29.67 27.44∗∗∗

(0.64)

27.34∗∗

(0.76)

27.41∗∗∗

(0.68)

29-31–C𝑎 𝑐𝐿1 = 29, 𝑐𝐿2 = 29 30.33 28.81

(0.79)

30.27

(0.71)

29.69

(0.66)

𝑐𝐿1 = 29, 𝑐𝐻2 = 31 31 30.75

(0.78)

30.68

(0.47)

30.70

(0.58)

𝑐𝐻1 = 31, 𝑐𝐿2 = 29 29 28.15

(0.80)

29.19

(0.54)

28.72

(0.64)

𝑐𝐻1 = 31, 𝑐𝐻2 = 31 29.67 28.49

(0.64)

29.75

(0.50)

28.99

(0.56)

29-31–I 𝑐𝐿 = 29 30.5 29.72

(0.85)

29.26

(0.95)

29.49

(0.88)

𝑐𝐻 = 31 29.5 28.04

(0.73)

28.89

(0.92)

28.45

(0.78)

25-35–I 𝑐𝐿 = 25 32.5 32.22

(0.77)

32.30

(0.53)

32.27

(0.57)

𝑐𝐻 = 35 27.5 27.63

(0.41)

28.25

(0.70)

27.93

(0.49)

20-40–I 𝑐𝐿 = 20 35 34.52

(0.71)

35.69

(0.77)

35.12

(0.65)

𝑐𝐻 = 40 25 24.96

(0.58)

25.27

(0.78)

25.08

(0.56)

20-40–10-50–I 𝑐𝐿1 = 20 35 35.00

(1.46)

36.50

(1.96)

35.64

(1.62)

𝑐𝐻1 = 40 25 24.18

(1.45)

23.44

(1.17)

23.77

(1.24)

𝑐𝐿2 = 10 40 37.72

(1.84)

39.16

(2.20)

38.49

(1.88)

𝑐𝐻2 = 50 20 19.86

(1.04)

17.90

(1.17)

18.93

(1.09)

Notes: This table shows averages of individual quantities per market with standard errors of the mean in 
parentheses. BNE refers to the Bayesian Nash equilibrium. 𝑎 In treatment 29-31–C, BNE and observed quan-

tities refer to those of player 1. Test statistics refer to two-tailed Wilcoxon tests of whether the sample mean 
is equal to BNE quantities. The unity of observation for the tests are averages of individual quantities per 
market. The symbols ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, 10% level, respectively.

3. Experimental design and procedures

In the experiment, subjects participated in 60 consecutive rounds of decision-making. In each round, the inverse demand function 
was given by 𝑃 (𝑄) = max{0, 120 − 𝑄}, where 𝑄 = 𝑞1 + 𝑞2 represents the aggregate quantity in the market. Participants acted as 
4

firms and decided simultaneously on their quantities 𝑞𝑖, 𝑖 = 1, 2. We used a between-subjects design. Table 1 gives an overview of 
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all treatments. The treatments differ with respect to the distribution of the unit costs of the two firms, 𝑐𝑖, 𝑖 = 1, 2 and with respect 
to the information about the cost structure in the market. In three out of the seven treatments (indicated with the letter ‘C’ in the 
treatment’s name), the costs of both firms in a given round were common knowledge. In the other four treatments (with the letter 
‘I’ in the treatment’s name), subjects only knew their own cost. More precisely, 30–C is a standard Cournot duopoly in which firms 
have constant unit costs of 30 each throughout the experiment and know it. In all other treatments, firms have one of two possible 
unit costs in each round, where in each round the unit costs are randomly assigned with probability 0.5. In 29-29–31-31–C, although 
the cost level is drawn randomly each period, the two firms receive the same costs. Symmetry is thus preserved. By contrast, in 
29-31–C, firms’ costs are independently drawn in each period and can therefore end up being different. While in 29-29–31-31–C and 
29-31–C both firms know their own and the other firm’s unit costs in each round, in all I-treatments each firm knows (a) its own 
randomly assigned unit cost and (b) the binary distribution of the unit cost of the other firm but not its realization. Note that all 
C–treatments and three of the four I–treatments (29-31–I, 25-35–I, 20-40–I) are ex-ante symmetric. Treatment 29-31–C could be 
ex-post asymmetric. Treatment 20-40–10-50–I is ex-ante and ex-post asymmetric as one firm has the two possible cost levels of 20 
and 40 and the other 10 and 50, respectively. Finally, note that in all treatments the ex-ante expected costs of firms are equal to 30.

The comparison between 30–C and 29-31–C allows us to measure the net effect of introducing random costs, under complete 
information. However, two changes happen at the same time: first, current costs, i.e., costs in a given round, might be different; 
second, the future is now uncertain as future cost configurations are not known. Comparisons with 29-29–31-31–C allow us to 
disentangle the two effects, since in this treatment, current costs are always identical, while the future remains uncertain (although 
symmetric). The comparison between 29-31–C and 29-31–I allows us to single out the role of incomplete information, at unchanged 
cost structure. Comparisons among 29-31–I, 25-35–I, and 20-40–I allow us to detect any impact of the size of cost asymmetry, given 
incomplete information. Treatment 20-40–10-50–I allows us to detect any potential additional impact of ex-ante asymmetry.

In each round, subjects could choose a non-negative quantity not larger than 120 with the smallest step size being 0.01. Before 
making their quantity decision, subjects also had the opportunity to simulate different market scenarios with the help of a profit 
calculator: they could enter two arbitrary quantities, one for themselves and one for their opponent, and were then shown the 
resulting profit for them.10 After all subjects had submitted their decisions, the computer software cleared the market by quoting the 
price leading (simulated) demand to equal the entire fictional quantity supplied. Subjects were then informed about the following: 
the last round’s costs (own cost in I-treatments or both costs in C-treatments), the quantity decisions of both firms, and their own 
profit in that round. This information remained present on the screen when deciding in the next round. Note that no information 
about the unit cost of the other firm was ever provided in the incomplete-information treatments.

Upon arrival in the lab, participants were given written instructions (see Web Appendix C for a translated version). Each partici-

pant was assigned to a computer and randomly matched with another subject with whom they interacted over the entire experiment. 
Subjects never learnt with whom they formed a market and communication among subjects was not possible. However, it was com-

mon knowledge that the composition of markets formed at the beginning of the experiment remained fixed throughout the whole 
experiment. The instructions stated that subjects would represent a firm in a market competing with one another firm.

The experiment was programmed and conducted using zTree (Fischbacher, 2007) at the Technical University Berlin and Hum-

boldt University Berlin. Participants were students (33% female), mostly from economics, business, natural sciences, or engineering. 
Altogether, we conducted 95 markets with 190 subjects and collected 11,400 quantity decisions. Each subject participated in one 
market only.

In the experiment, a fictional currency called ECU (Experimental Currency Unit) was used, with a pre-announced exchange rate 
of 3000 ECU = 1 EUR. At the end of the experiment, subjects were paid on the basis of their cumulated earnings over the 60 rounds 
of play. The average earnings per subject in the experiment was 18.02 EUR.11 Sessions took about 60 minutes to complete.

4. Experimental results

4.1. Aggregate results

Table 2 provides summary statistics for our experimental results. To account for statistical dependence of observations over time 
within a given market, we provide averages of individual quantities per market (with standard errors of the mean in parentheses) 
for various time intervals and for each of our treatments separately.12 Table 2 also shows the results of two-tailed Wilcoxon tests 
of whether the sample mean is equal to Bayes-Nash equilibrium values. The unit of observation for the tests is market averages of 
individual quantities. Looking at Table 2, we make a number of observations. First, for treatment 30–C, we find confirmation of 
the known result that subjects are, on average, partially able to collude.13 For the three time intervals considered, the Wilcoxon test 

10 The profit calculator provides essentially the same information as commonly used payoff tables, but helps to avoid a possible bias due to limited cognitive 
abilities of participants (Huck et al. 2000, p. 42). Due to its availability in all treatments, the use of the payoff calculator cannot explain the treatment effects we 
report in this paper. Note that Requate and Waichman (2011) report that “the most standard variations, which are the use of a profit table or a profit calculator, yield 
indistinguishable performance.” (p. 36).
11 In addition to their earnings in the experiment, subjects were given an initial (show-up) payment of 2.50 EUR in all treatments except 29-29–31-31–C, and 6 EUR 

in treatment 29-29–31-31–C (due to a change in the lab rules at the time the latter treatment was conducted).
12 As mentioned before, perfectly collusive outcomes are not well-defined in all treatments but 30–C due to the asymmetry of interests. Hence, we do not provide 

collusion indices (Friedman, 1971) as is customary in many papers on market experiments.
5

13 Note that the individual perfectly collusive quantity (half of the monopoly quantity) is 22.5.
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indicates that the observed individual market averages are statistically significantly below the Nash equilibrium. Second, in treatment 
29-29–31-31–C, subjects also collude on average, though to a lesser extent than subjects in treatment 30–C. Again, Wilcoxon tests 
for treatment 29-29–31-31–C indicate that the observed individual market averages are statistically significantly below Bayes-Nash 
equilibrium levels for all time horizons considered in Table 2. Third, in all other treatments the observed averages are remarkably 
close to the Bayes-Nash equilibrium, and in none of the cases does the Wilcoxon test reject equality of observed averages with 
predicted values (𝑝 > 0.1).14 This is perhaps most surprising in treatments 29-31–C and 29-31–I where subjects know that in each 
round they have very similar costs. Yet it appears that subjects are unable to collude successfully even though they interact repeatedly 
over 60 rounds in fixed pairs. Figure A.1 in Web Appendix B.1 shows the distributions (histograms) of averages of individual 
quantities per market for each treatment separately.

The question is why we observe successful collusion in the case of full symmetry and complete information but neither in 
complete-information treatment 29-31–C nor in any of the incomplete-information treatments (one of which involves only minute 
payoff differences). The results for 29-29–31-31–C, where subjects manage to achieve some collusion, while they fail to do so in 
29-31–C, suggest that (small, symmetric) uncertainty about the future is not the main driver of the breakdown in cooperation. 
Asymmetry or uncertainty about current cost conditions, the fact that subjects do not know that they have identical interests in the 
current period, seems to play a key role. We thus conjecture that in treatments in which asymmetry or incomplete information about 
current cost conditions is present, players are less willing to cooperate. This could translate into some unwillingness to go along with 
opponents who try and cut output.

In the next subsection, we shed light on this issue by analyzing to what extent behavior in our treatments accords with several 
learning dynamics.

4.2. Learning dynamics: theory

To understand subjects’ quantity choices, we attempt to compare their sequence of decisions to some learning rules that could 
theoretically explain how their behaviors evolve over time. Two caveats apply. First, many learning rules or models have been 
proposed in the game-theoretic and experimental literatures over the past 40 years so that any focus on a subset of them can always 
be construed as arbitrary. One is often led to use those rules that have been extensively studied or have interesting theoretical 
properties or have been shown to have some predictive power in a number of contexts. We will be no exception.

Second, most of the learning-in-games literature has been concerned with stable and symmetric environments where players have 
the same strategy set and the same payoff function in every period. When costs are independently and randomly drawn, our Bayes-

Nash Cournot stage game is ex-ante symmetric (except in 20-40–10-50–I, which we leave aside), but in any given period, because of 
the cost draws, two players in a market may happen to have different costs and therefore different payoffs. Moreover, the situation 
might be different in the next period. This considerably complicates the specification of “reasonable” learning rules. To illustrate, 
suppose that in treatment 29-31–C, in period 𝑡, both player 1 and player 2 drew 𝑐𝐿. Suppose further that in period 𝑡 + 1, player 1 
drew cost 𝑐𝐿 again while player 2 drew 𝑐𝐻 . Imagine you want to specify a simple best-response rule where a player plays her best 
response to the latest relevant quantity played by her opponent. In 𝑡 + 1, should player 1 best-respond to the quantity chosen by 
player 2 in period 𝑡? That is defensible but not obvious. Indeed, player 1 knows that player 2 now has a different payoff and may be 
led to play another quantity than the one she last chose. She may want to react to the quantity chosen by player 2 the last time she 
drew a cost of 𝑐𝐻 , which may not be the previous period in general and is not the previous period in this specific example.

We could not find relevant guidance in the literature about such questions and about learning in changing environments, more 
generally. Hence, our study of individual behavior is a first pass at dealing with the issue. We chose to adapt some existing rules to 
our context (and later check that using some other, perhaps more “naive”, rules also supports our analysis) but we do not claim any 
of those to be of universal application. We believe our choices are sensible but the general question of learning in dynamic games 
remains open.

We focus on two learning rules: best-response to relevant past play and conditional imitation of the other player’s actions. Those 
two processes have the interesting property of converging toward Cournot outcomes and collusive outcomes (in some specific sense 
which we explain below), respectively.

4.2.1. Specification of the best-response (“BR”) process

In some of our treatments, in each period, players face a potentially different (observable) cost configuration. We define the 
first learning rule as best-responding to the last “relevant” quantity played by the other player. The general idea is as follows. If 
𝑟𝑖(𝑠), where 𝑠 is a particular cost configuration, stands for the latest quantity played by firm 𝑗 in that cost configuration, firm 𝑖 will 
best-respond to 𝑟𝑖(𝑠) next time cost configuration 𝑠 is drawn. It is as if player 𝑖 were keeping mental track of the quantities last chosen 
by player 𝑗 in the various cost configurations.

For example, in treatment 29-31–C, player 𝑖 observes the cost type of 𝑗 on top of her own cost. Thus, there are four (common) 
cost configurations or states, and the state space is 𝑆 = {(𝑐𝐿, 𝑐𝐿), (𝑐𝐿, 𝑐𝐻 ), (𝑐𝐻 , 𝑐𝐿), (𝑐𝐻 , 𝑐𝐻 )}, where the first variable stands for the 
cost drawn by player 1 and the second, for the cost drawn by player 2. Let 𝑏(⋅) denote the Cournot best-response operator. Let 𝑞𝑡

𝑗
be 

the quantity played by player 𝑗 in period 𝑡. In any period, an updating process takes place. If player 𝑖 finds herself in state 𝑠 ∈ 𝑆 in 

14 The existing literature on Cournot markets with asymmetric costs, complete information and fixed matching reports observed average individual quantities to be 
6

close to static Nash predictions (see Mason et al., 1992; Fonseca et al., 2005; or Normann et al., 2014).
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period 𝑡, she will play 𝑏(𝑟𝑖(𝑠)) and then update 𝑟𝑖(𝑠) to correspond to 𝑞𝑡
𝑗

so that next time cost configuration 𝑠 arises again, she will 
best-respond to 𝑞𝑡

𝑗
.

In incomplete-information treatments, for example, 29-31–I, player 𝑖 observes only her own cost level. Hence, the set of observable 
cost configurations is 𝑆 = {𝑐𝐿, 𝑐𝐻}. That is, when 𝑖 observes a particular cost level for herself, she will best-respond to the quantity 
chosen by 𝑗 last time she happened to have drawn that cost level. That is the sense in which a player best-responds to the quantity 
chosen by the other player in the last “relevant” round.

4.2.2. Specification of the conditional imitation (“CI”) process

Imitation has been shown to play a role in a number of experimental games (see, e.g., Huck et al., 1999, 2002, Rassenti et al., 
2000; Offerman et al., 2002). In an environment where players do not necessarily have the same payoff, it is however not obvious 
how to specify an imitation process (or even, whether imitation should take place in the first instance). We specify an imitation 
process that is not “naive” (reproducing the choices of the other player in all circumstances) but is concerned with the “exemplary” 
choices made by the other player.15 Exemplarity is defined with reference to the maximization of joint payoffs: the quantity chosen 
by the other player in a particular cost configuration is exemplary if, when a player found herself in a comparable situation, she 
would find it better, from the point of view of the expected sum of profits, to play the quantity chosen by the other player rather 
than the quantity that she has last played in that state.

Thus, each player keeps track of a set of “exemplary” quantities, one for each cost configuration at which she may be called 
upon making a decision. At the end of every period, given the current cost configuration and play, a player asks herself whether 
the quantity just chosen by the other player would be a good idea for her to play in comparable circumstances. If (and only if) the 
answer is yes, then that player will update her list of exemplary quantities and imitate the other player next time those relevant 
circumstances arise. That is the sense in which imitation is “conditional”.

This process is inspired by the “follow-the-exemplary-other-firm” process put forward by Offerman et al. (2002) in the case 
of symmetry, identical repetition, and complete information, and actually nests that case as a special (degenerate) case with one 
(common) cost configuration.

To be more specific, in the asymmetric case under complete information (treatment 29-31–C), player 𝑖 observes the cost type of 
𝑗 on top of her own cost. Thus, there are four (common) states: (𝑐𝐿, 𝑐𝐿), (𝑐𝐿, 𝑐𝐻 ), (𝑐𝐻 , 𝑐𝐿), (𝑐𝐻 , 𝑐𝐻 ). So, each player 𝑖 keeps track of 
four exemplary quantities: {𝐪𝑖(𝑐𝐿, 𝑐𝐿), 𝐪𝑖(𝑐𝐿, 𝑐𝐻 ), 𝐪𝑖(𝑐𝐻 , 𝑐𝐿), 𝐪𝑖(𝑐𝐻 , 𝑐𝐻 )}.

In the symmetric states {(𝑐𝐿, 𝑐𝐿), (𝑐𝐻 , 𝑐𝐻 )}, at the end of the period, player 𝑖 asks herself whether it would have been a good idea 
for her to play the quantity just chosen by 𝑗. If so, she updates the relevant state variable and will play that quantity next time the 
cost configuration arises again.

In the asymmetric states {(𝑐𝐿, 𝑐𝐻 ), (𝑐𝐻 , 𝑐𝐿)}, at the end of the period, player 𝑖 asks herself whether it would have been a good 
idea to play the quantity just chosen by 𝑗, had she been in 𝑗 ’s position, that is, had the two roles (cost types) been switched. That is 
consistent with the fact that player 𝑖 understands that she has just had a different cost draw than player 𝑗 and that player 𝑗 ’s choice 
is relevant to her, from the point of view of joint profit maximization, only in the reversed cost configuration. If the answer is yes, 
she will update the relevant state variable and play that “exemplary” quantity next time roles are switched.

In the case of incomplete information, player 𝑖 is not aware of player 𝑗 ’s cost and so this issue does not arise, as 𝑖 simply asks 
herself whether the quantity chosen by 𝑗 would be a good idea, from the point of view of joint profit maximization, for a player who 
has just drawn her cost level and does not know the cost of her opponent for sure. We provide details about the updating processes 
in Web Appendix A.16

Note that under this conditional imitation rule, players move towards quantities that are more and more “collusive” since they 
choose to change their behavior (“update”) only when this is better from the point of view of joint expected profit-maximization. By 
contrast, as is intuitive, best-response dynamics in Cournot environments lead players towards Cournot equilibrium outcomes.

4.2.3. Simulation results

That is corroborated by our simulations of (stochastic versions of) best-response and conditional imitation dynamics for all 
treatments (see Table A.1 in Web Appendix A.3). First, best-response dynamics converge to the Bayes-Nash equilibrium of the stage 
game in all treatments.17 Second, for the complete-information treatments, conditional imitation dynamics converge to the solution 
to joint profit maximization, which consists of having the low-cost firm produce the monopoly quantity (for that cost level), while 
the high-cost firm produces nothing. In incomplete-information treatments, play also converges to quantities that are below the 
Bayes-Nash predictions and decreasing in costs, but both strictly positive. Note that in those latter treatments, the sum of the two 
limit quantities is roughly equal to 45, which is the monopoly output in Treatment 30–C.

Hence, it appears that players following best-response dynamics (“BR”) would converge towards “competitive” play (Bayes-

Nash Cournot outcomes) while players following conditional imitation dynamics (“CI”) would achieve collusive outcomes. Thus, 

15 Note that a deterministic unconditional imitation process where players simply play the quantity chosen by the other player in the latest round would not 
necessarily converge, as players would take turns in playing the two initially-chosen quantities.
16 We leave aside treatment 20-40–10-50–I. In this treatment, players know for a fact that they will never have the same cost level as their opponent’s. Thus, the 

very idea of imitating the other player’s behavior is called into question.
17 For complete-information Cournot duopoly with linear demand and costs, this is of course known since Theocharis (1960). With costs randomly drawn every 

period, the quantity played varies from one period to the next. So, 𝑞𝑡
𝑖
, as a series, does not technically converge. Quantities played as a function of the cost configuration 
7

converge.
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Table 3

Summary of hypothesis tests for adjustment dynamics per individual.

𝐻0 𝐻1 30-30–C 29-29–31-31–C 29-31–C 29-31–I 25-35–I 20-40–I

Percentage of subjects for which 𝐻0 is rejected at the 5% level (in favor of 𝐻1)

“Previous relevant 𝑝 = 0.5 𝑝 < 0.5 57.14 33.33 6.67 21.43 7.14 7.69

rounds” 𝑝 = 0.5 𝑝 > 0.5 28.57 47.22 60.00 60.71 71.43 53.85

Notes: This table shows the results of binomial tests at the individual level, using all data. Note that 𝑝 < 0.5 (𝑝 > 0.5) means that behavior is closer to conditional 
imitation (best response).

determining whether players are closer to using BR learning rules, than to using CI, potentially allows us to explain why outcomes 
may be more competitive in some treatments than in some others.

4.3. Learning dynamics: results

In order to explore the learning patterns in our experiment, we compare the observed adjustment behavior with those predicted 
by the two learning dynamics discussed in the previous section. Fig. 1 shows the evolution of the average observed differences 
Δ𝑞OBS = 𝑞𝑡

𝑖
− 𝑞𝑡−1

𝑖
(solid line), where 𝑞𝑡

𝑖
and 𝑞𝑡−1

𝑖
are player 𝑖’s quantity choices in current period 𝑡 and previous relevant period 𝑡 −1, 

respectively, averaged across cost configurations and markets per treatment. The two other lines in Fig. 1 indicate the predicted 
average differences Δ𝑞BR = 𝐵𝑅𝑡−1

𝑖
− 𝑞𝑡−1

𝑖
(dotted line) and Δ𝑞CI = 𝐶𝐼𝑡−1

𝑖
− 𝑞𝑡−1

𝑖
(dashed line), where 𝐵𝑅𝑡−1

𝑖
and 𝐶𝐼𝑡−1

𝑖
are the point 

predictions implied by playing “best response” and “conditional imitation,” respectively.18 Inspecting Fig. 1, we make one main 
observation: In treatments 30–C and 29-29–31-31–C, the line representing Δ𝑞OBS is between the lines representing Δ𝑞BR and Δ𝑞CI. 
However, in all other treatments, the lines representing Δ𝑞OBS and Δ𝑞BR are very close to each other, while the line representing 
Δ𝑞CI is clearly and substantially below the two other lines. This suggests that in treatment 29-31–C and all incomplete-information 
treatments, behavior is much more in line with best-response adaptations than with conditional-imitation behavior.

We performed non-parametric tests to verify that behavior in the treatments with symmetric costs and complete information (as 
shown in the two top panels in Fig. 1) is qualitatively clearly different than behavior in the asymmetric-cost treatment 29-31–C and 
the incomplete-information treatments (as shown in the other panels in Fig. 1). For this purpose, we computed averages across all 
periods at the individual market level of the terms Δ𝑞OBS, Δ𝑞BR and Δ𝑞CI. Table A2 in Web Appendix B.1 shows market averages 
(with standard errors of the mean in parentheses) of these terms for each possible cost configuration per treatment. Table A2 also 
shows the results of two-tailed Wilcoxon tests of whether the sample mean of Δ𝑞OBS is the same as either Δ𝑞BR or Δ𝑞CI, respectively. 
The unit of observation for the tests is market averages for each treatment. For treatments 30–C and 29-29–31-31–C, we find that 
the market averages of Δ𝑞BR are significantly larger than the market averages of Δ𝑞OBS and the latter significantly larger than 
the market averages of Δ𝑞CI. For all other treatments, we find that the market averages of Δ𝑞OBS and Δ𝑞CI are still significantly 
different, but that the market averages of Δ𝑞OBS and Δ𝑞BR are statistically indistinguishable from each other. This indicates that 
adaptation behavior in treatments other than 30–C and 29-29–31-31–C are in line with best-response behavior and clearly different 
from conditional-imitation behavior. Average observed adaptation behavior in the treatments 30–C and 29-29–31-31–C appears to 
be a mix between BR and CI. Indeed, in those treatments we find that subjects in some markets successfully collude, while others 
rather play according to Nash equilibrium predictions.

We also conducted tests at the individual level. To do so, we define the following dummy variable labeled “INDEX” for each 
individual decision observed in the experiment:

INDEX =

{
1 if |Δ𝑞OBS −Δ𝑞BR| < |Δ𝑞OBS −Δ𝑞CI|
0 otherwise.

(4)

That is, variable INDEX is equal to 1 if the observed adaptation (Δ𝑞OBS) is closer to the one prescribed by best-response behavior 
(Δ𝑞BR) rather than conditional-imitation behavior (Δ𝑞CI), and 0 otherwise. Under the assumption that the BR and CI dynamics 
explain observed behavior equally well, the variable INDEX as defined in (4) should be binomially distributed with 𝑝 = 0.5 for each 
subject.19 Note that an observed 𝑝 > 0.5 (𝑝 < 0.5) means that a subject’s behavior is closer to BR (CI). The results are presented 
in Table 3, where we ignore treatment 20-40–10-50–I, see footnote 16. The entries in this table indicate the share of subjects per 
treatment for which 𝐻0: 𝑝 = 0.5 is rejected. We make the following main observations. In treatment 30–C, the percentage of subjects 
for which 𝐻0 is rejected in favor of 𝐻1: 𝑝 < 0.5 is clearly larger than the percentage of subjects for which 𝐻0 is rejected in favor 
of 𝐻1: 𝑝 > 0.5. In the other treatments, the percentage of subjects for which 𝐻0 is rejected in favor of 𝐻1: 𝑝 < 0.5 is clearly smaller

than the percentage of subjects for which 𝐻0 is rejected in favor of 𝐻1: 𝑝 > 0.5. This indicates that at the individual level, in all 
treatments but 30–C subjects’ adjustments are on average more in line with best-response behavior than with conditional-imitation 
behavior, highlighting the effect of introducing asymmetric costs and incomplete information.

We also investigate the above results by means of extensive regression analysis. The variable INDEX as defined in (4) serves as 
the dependent variable in probit panel regressions involving the following independent variables: A binary variable (“AsymCosts”) 

18 For the initialization of the CI dynamics, we use the average across markets of quantities chosen by the other player in the relevant cost configuration in period 1.
8

19 We hasten to acknowledge that this approach (counterfactually) relies on the observations in a given market being independent from one period to the next.
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Notes: The panels in this figure show the evolution of the terms Δ𝑞OBS = 𝑞𝑡
𝑖
− 𝑞𝑡−1

𝑖
(solid line), Δ𝑞BR = 𝐵𝑅𝑡−1

𝑖
− 𝑞𝑡−1

𝑖
(dotted line) and Δ𝑞CI = 𝐶𝐼𝑡−1

𝑖
− 𝑞𝑡−1

𝑖
(dashed line) 

per treatment (see the definitions in the text, starting on page 8), averaged across cost configurations and markets of the same treatment.
9

Fig. 1. Evolution of average observed and predicted changes in quantities.
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indicating whether cost asymmetry exists, a binary variable (“PrivInfo”) indicating the presence of incomplete information, and a 
binary variable (“RandSym”) indicating randomness in cost assignment in a symmetric and complete-information treatment. The 
regression results, reported in Table A3 in Web Appendix B.2, show that “AsymCosts” and “PrivInfo” are positive and statistically 
significant, while “RandSym” is also positive but insignificant. Given the definition of the dependent variable in (4), these results 
confirm that the presence of cost asymmetry or incomplete information significantly tilts behavior towards best-responding. In the 
Web Appendix B.2, we show that other definitions of cost asymmetry (ex post asymmetry) or conditioning on the last round played 
rather than the last “relevant” round leave this result unchanged. We also perform robustness checks by (i) changing the initial 
conditions of the CI process (predicted BNE quantities instead of the average observed quantities played in period 1), (ii) redefining 
the CI process by allowing players to learn not only from the quantities chosen by the other player but also from the ones they 
have just chosen in the current round, and (iii) replacing the CI process with unconditional imitation (UI) of the quantity played 
by the other player in the last relevant round. Although the level of significance of our regressors occasionally changes from one 
regression to the next, all specifications indicate that cost asymmetry and complete information foster best-response behavior (see 
Web Appendix B.3).

Finally, the analysis of the recorded simulations conducted by subjects with the help of the payoff calculator prior to the actual 
quantity choices confirms the observed difference in the subjects’ decision approach used in treatment 30–C compared to the treat-

ments with either cost asymmetry or incomplete information.20 See Table A5 in Web Appendix B.4 for detailed results. Specifically, 
it is apparent that subjects in treatment 30–C used the profit calculator least often, and also the share of actual quantity choices tried 
out in the simulations were at the minimum in treatment 30–C.

5. Concluding remarks

5.1. Summary

We report on Cournot duopoly market experiments with a relatively high number of repetitions and fixed matching. We run treat-

ments that include markets with (a) complete cost symmetry and complete information about current costs (which are either constant 
over time or drawn anew every period), (b) slight cost asymmetry and complete information, and (c) varying cost asymmetries and 
incomplete information.

The main result can be interpreted as a “discontinuity” in behavior: While for markets with complete symmetry of and complete 
information about current cost conditions, our data confirm the known result that duopoly players achieve on average partially 
collusive outcomes, we find that, as soon as any level of cost asymmetry or incomplete information is introduced, collusion breaks 
down and observed average individual quantities get remarkably close to the static (Bayesian) Nash equilibrium values. This is so 
despite a high number of repetitions (60 rounds) and fixed matching.

The results of the analysis of players’ adjustment behavior over time provide an explanation of this main result. We find signifi-

cantly more adjustments in line with best-response behavior than with conditional imitation in those treatments involving asymmetry 
or incomplete information about current cost conditions. This explains our results since simulations show that best-response dynamics 
converge to static (Bayesian) Nash equilibrium quantities, whereas conditional-imitation dynamics converge to collusive outcomes.

The standard adjustment dynamics that are present in the literature have been developed in the context of symmetric and 
complete-information games. Adapting them to asymmetric or uncertain environments is not necessarily obvious and we have made 
a first pass at it. Other learning rules and other approaches can be conceived and we do not claim that the ones we used in this paper 
are the best predictors of subjects’ behavior. We think that future theoretical and empirical work should probe whether alternative 
specifications can better account for players’ adaptations over time in such environments.

5.2. Relation to the literature

In their Bertrand duopoly treatment (as well as the ones with 3 or 4 firms) with costs independently and repeatedly drawn from a 
common distribution, Abbink and Brandt (2005) found that prices were systematically below the Bayes-Nash values, that is, observed 
play was more competitive than Bayes-Nash equilibrium predictions. We find, on the contrary, that, in our incomplete-information 
treatments, observed average quantities are in line with Bayes-Nash equilibrium predictions. This may yet again point to a funda-

mental difference between experimental Bertrand and Cournot environments (and more generally, games of strategic substitutes vs. 
games of strategic complements, see, e.g., Potters and Suetens, 2009; Mermer et al., 2021). Note, however, that, in contrast to the 
evidence relating to complete-information, symmetric contexts (Suetens and Potters, 2007), in Bayes-Nash environments Bertrand 
appears to lead to more competitive outcomes than Cournot.

When it comes to collusion, the Cournot model can be interpreted as an extended form of a Prisoner’s Dilemma (PD). There are 
several papers that explore the role of stochasticity, asymmetry and incomplete information in (finitely) repeated PD games. See 
Andreoni and Miller (1993), Bereby-Meyer and Roth (2006), Ahn et al. (2007), or Zhang et al. (2022), to name a few.21 However, 

20 Recall that according to our experimental design, before making their quantity decisions, subjects had the opportunity to simulate different market scenarios with 
the help of a profit calculator. More precisely, they could try different pairs of quantities (own and of the opponent) and were then shown the resulting profit for 
themselves.
10

21 For a survey of the literature on (in)finitely repeated PD games, see Embrey et al. (2018), Bo and Fréchette (2018), Mengel (2018).
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these papers, like the Cournot literature, implement incomplete information in a context that is quite different from the one of 
Bayesian games (Harsanyi, 1967). For example, Andreoni and Miller (1993) manipulate subjects’ beliefs about the opponent’s type 
by varying the probability of interacting with a computerized opponent. Bereby-Meyer and Roth (2006) compare behavior in PD 
games with either deterministic or ‘noisy’ (as opposed to type-contingent) payoffs. Notwithstanding those differences, similarly to 
our findings, these studies tend to show that cooperation is harder to sustain when a (potential) difference in players’ payoffs leads 
to an increase in the uncertainty about the opponents’ intentions.

There is also a sizeable experimental literature studying collusive behavior in auctions, which stand for prime examples of 
Bayesian games. However, by construction, this literature does not compare complete to incomplete information.22 Moreover, very 
few studies concern themselves with asymmetry and, when doing so, typically focus on ex-ante asymmetry in the distribution of 
valuations (see, e.g., Güth et al., 2005).23 Instead, researchers compare various auction formats or various ‘institutions’ thought 
to affect collusion.24 The most closely related studies in this strand of literature are the ones of Sherstyuk (1999) and Sherstyuk 
(2002) which investigate whether and to what extent varying the degree of bidders’ value (ex-post) asymmetry and the gains from 
collusion in oral ascending auctions affects collusion. Note that in ascending auctions, players’ actions are observable and reaction to 
opponents’ actions are possible before the game ends. In that sense, Bayes-Cournot games are comparable to sealed-bid auctions rather 
than ascending auctions but repetition allows for some reactions over time. Those differences notwithstanding, Sherstyuk (1999)

demonstrates that if all bidders have the same value for the object (the special case of symmetry and complete information), then 
collusive outcomes are sustainable only in oral ascending auctions, whereas outcomes in sealed-bid auctions are significantly more 
competitive. Sherstyuk (2002) shows that, if bidders’ values are private information, but drawn from the same (ex-ante symmetric) 
distribution, increasing the level of bidders’ value ex-post asymmetry leads to an increase in market competitiveness. Those results 
are broadly in line with our findings.

Finally, our results are also reminiscent of those in Crawford et al. (2008). These authors report that in games with symmetric 
payoffs salient labels generate high coordination rates, while the effectiveness of salient labels is significantly reduced in the presence 
of even slight payoff differences between players. Crawford et al. (2008) mainly invoke level-k thinking to explain their one-shot 
experiments.25

It is worth noting that our experiment was concerned with decision-making in isolation, without the possibility for subjects 
to communicate. Communication is often reported to help sustain cooperation in social dilemmas. For instance, in the context of 
symmetric Bertrand oligopolies, Fonseca and Normann (2012) show that pre-play communication increases profits for any number 
of firms. Fischer and Normann (2019) show that in asymmetric Cournot duopolies, talking helps reduce output. Agranov and Yariv 
(2018) show that communication reliably facilitates collusion in one-shot sealed-bid auctions. This begs the question as to whether 
communication would also restore cooperation in our Cournot-Bayes-Nash environments. We plan to investigate this matter in future 
work.
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